Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912529044> ?p ?o ?g. }
- W2912529044 endingPage "141" @default.
- W2912529044 startingPage "133" @default.
- W2912529044 abstract "Cloud-assisted internet of things (CIoT) is backboned by the wireless sensor network (WSN) architecture. A sensor network is an autonomous self-resource constraint collection of internet of things (IoT) sensor nodes. The nodes communicate in an ad-hoc fashion to transfer cloud information over the virtual environment. Clustering in WSNs helps to improve the quality of the network by controlling energy consumption and improving data gathering accuracy. This improves the service rates of CIoT. Optimizing IoT sensor networks through energy and overhead management requires complex clustering algorithms. A simple clustering scheme cannot achieve the desired performance enhancement during transmission in a virtual environment. This research attempts to propose a reinforcement-based learning technique, adaptive Q-learning (AQL) to improve network performance with minimum energy–overhead tradeoff in a sensor network-aided CIoT. AQL operates in two distinct phases for cluster head selection and forwarder selection. The decision-making system is used to qualify nodes based on their past behavior over transmission. AQL improves both inter- and intra-cluster communication optimization through adaptive forwarder and header selection conditions. The simulation results prove the consistency of the proposed AQL by retaining the live node counts in the network and their persistent energy despite the reduced overheads in the sensor network. With the achievement of constructive features in the sensor networks, the performance of CIoT is considerably improved. The experimental results illustrate the effectiveness of the proposed learning technique by improving network lifetime with a high request–response rate and by minimizing delay, overhead, and request failures." @default.
- W2912529044 created "2019-02-21" @default.
- W2912529044 creator A5004131475 @default.
- W2912529044 creator A5066586815 @default.
- W2912529044 date "2019-04-01" @default.
- W2912529044 modified "2023-10-14" @default.
- W2912529044 title "Optimizing the network energy of cloud assisted internet of things by using the adaptive neural learning approach in wireless sensor networks" @default.
- W2912529044 cites W1984866136 @default.
- W2912529044 cites W2003955217 @default.
- W2912529044 cites W2027421944 @default.
- W2912529044 cites W2033968080 @default.
- W2912529044 cites W2035559399 @default.
- W2912529044 cites W2037774950 @default.
- W2912529044 cites W2061879708 @default.
- W2912529044 cites W2065466701 @default.
- W2912529044 cites W2067757953 @default.
- W2912529044 cites W2098539196 @default.
- W2912529044 cites W2111180188 @default.
- W2912529044 cites W2116288424 @default.
- W2912529044 cites W2117461507 @default.
- W2912529044 cites W2129554770 @default.
- W2912529044 cites W2164374981 @default.
- W2912529044 cites W2208145329 @default.
- W2912529044 cites W2341901808 @default.
- W2912529044 cites W2400664831 @default.
- W2912529044 cites W2518735427 @default.
- W2912529044 cites W2550179908 @default.
- W2912529044 cites W2555316170 @default.
- W2912529044 cites W2562947506 @default.
- W2912529044 cites W2592413155 @default.
- W2912529044 cites W2593302130 @default.
- W2912529044 cites W2600639556 @default.
- W2912529044 cites W2760370228 @default.
- W2912529044 cites W2761417156 @default.
- W2912529044 cites W2765546280 @default.
- W2912529044 cites W2769264085 @default.
- W2912529044 cites W2790567435 @default.
- W2912529044 cites W2793006475 @default.
- W2912529044 cites W2795485167 @default.
- W2912529044 cites W2803698262 @default.
- W2912529044 cites W2892973045 @default.
- W2912529044 cites W3100857292 @default.
- W2912529044 doi "https://doi.org/10.1016/j.compind.2019.01.004" @default.
- W2912529044 hasPublicationYear "2019" @default.
- W2912529044 type Work @default.
- W2912529044 sameAs 2912529044 @default.
- W2912529044 citedByCount "57" @default.
- W2912529044 countsByYear W29125290442019 @default.
- W2912529044 countsByYear W29125290442020 @default.
- W2912529044 countsByYear W29125290442021 @default.
- W2912529044 countsByYear W29125290442022 @default.
- W2912529044 countsByYear W29125290442023 @default.
- W2912529044 crossrefType "journal-article" @default.
- W2912529044 hasAuthorship W2912529044A5004131475 @default.
- W2912529044 hasAuthorship W2912529044A5066586815 @default.
- W2912529044 hasConcept C108037233 @default.
- W2912529044 hasConcept C111919701 @default.
- W2912529044 hasConcept C120314980 @default.
- W2912529044 hasConcept C154945302 @default.
- W2912529044 hasConcept C24590314 @default.
- W2912529044 hasConcept C2779960059 @default.
- W2912529044 hasConcept C31258907 @default.
- W2912529044 hasConcept C41008148 @default.
- W2912529044 hasConcept C41971633 @default.
- W2912529044 hasConcept C555944384 @default.
- W2912529044 hasConcept C557945733 @default.
- W2912529044 hasConcept C73555534 @default.
- W2912529044 hasConcept C76155785 @default.
- W2912529044 hasConcept C79403827 @default.
- W2912529044 hasConcept C79974875 @default.
- W2912529044 hasConceptScore W2912529044C108037233 @default.
- W2912529044 hasConceptScore W2912529044C111919701 @default.
- W2912529044 hasConceptScore W2912529044C120314980 @default.
- W2912529044 hasConceptScore W2912529044C154945302 @default.
- W2912529044 hasConceptScore W2912529044C24590314 @default.
- W2912529044 hasConceptScore W2912529044C2779960059 @default.
- W2912529044 hasConceptScore W2912529044C31258907 @default.
- W2912529044 hasConceptScore W2912529044C41008148 @default.
- W2912529044 hasConceptScore W2912529044C41971633 @default.
- W2912529044 hasConceptScore W2912529044C555944384 @default.
- W2912529044 hasConceptScore W2912529044C557945733 @default.
- W2912529044 hasConceptScore W2912529044C73555534 @default.
- W2912529044 hasConceptScore W2912529044C76155785 @default.
- W2912529044 hasConceptScore W2912529044C79403827 @default.
- W2912529044 hasConceptScore W2912529044C79974875 @default.
- W2912529044 hasFunder F4320335726 @default.
- W2912529044 hasLocation W29125290441 @default.
- W2912529044 hasOpenAccess W2912529044 @default.
- W2912529044 hasPrimaryLocation W29125290441 @default.
- W2912529044 hasRelatedWork W1975451135 @default.
- W2912529044 hasRelatedWork W2012250365 @default.
- W2912529044 hasRelatedWork W2129477171 @default.
- W2912529044 hasRelatedWork W2148549110 @default.
- W2912529044 hasRelatedWork W2265236459 @default.
- W2912529044 hasRelatedWork W2890570089 @default.
- W2912529044 hasRelatedWork W3095958166 @default.
- W2912529044 hasRelatedWork W3148968234 @default.
- W2912529044 hasRelatedWork W917005982 @default.