Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912530199> ?p ?o ?g. }
- W2912530199 endingPage "763" @default.
- W2912530199 startingPage "741" @default.
- W2912530199 abstract "Abstract Skin cancer is being a most deadly type of cancers which have grown extensively worldwide from the last decade. For an accurate detection and classification of melanoma, several measures should be considered which include, contrast stretching, irregularity measurement, selection of most optimal features, and so forth. A poor contrast of lesion affects the segmentation accuracy and also increases classification error. To overcome this problem, an efficient model for accurate border detection and classification is presented. The proposed model improves the segmentation accuracy in its preprocessing phase, utilizing contrast enhancement of lesion area compared to the background. The enhanced 2D blue channel is selected for the construction of saliency map, at the end of which threshold function produces the binary image. In addition, particle swarm optimization (PSO) based segmentation is also utilized for accurate border detection and refinement. Few selected features including shape, texture, local, and global are also extracted which are later selected based on genetic algorithm with an advantage of identifying the fittest chromosome. Finally, optimized features are later fed into the support vector machine (SVM) for classification. Comprehensive experiments have been carried out on three datasets named as PH2, ISBI2016, and ISIC (i.e., ISIC MSK‐1, ISIC MSK‐2, and ISIC UDA). The improved accuracy of 97.9, 99.1, 98.4, and 93.8%, respectively obtained for each dataset. The SVM outperforms on the selected dataset in terms of sensitivity, precision rate, accuracy, and FNR. Furthermore, the selection method outperforms and successfully removed the redundant features." @default.
- W2912530199 created "2019-02-21" @default.
- W2912530199 creator A5006086969 @default.
- W2912530199 creator A5018549351 @default.
- W2912530199 creator A5042973836 @default.
- W2912530199 creator A5052505171 @default.
- W2912530199 creator A5054581568 @default.
- W2912530199 creator A5062125413 @default.
- W2912530199 creator A5082834230 @default.
- W2912530199 creator A5084968897 @default.
- W2912530199 date "2019-02-15" @default.
- W2912530199 modified "2023-10-02" @default.
- W2912530199 title "Construction of saliency map and hybrid set of features for efficient segmentation and classification of skin lesion" @default.
- W2912530199 cites W1793780650 @default.
- W2912530199 cites W1820264760 @default.
- W2912530199 cites W1965969360 @default.
- W2912530199 cites W1978623084 @default.
- W2912530199 cites W1982147649 @default.
- W2912530199 cites W1991607872 @default.
- W2912530199 cites W2003834444 @default.
- W2912530199 cites W2008096797 @default.
- W2912530199 cites W2017573959 @default.
- W2912530199 cites W2021707668 @default.
- W2912530199 cites W2032172510 @default.
- W2912530199 cites W2044465660 @default.
- W2912530199 cites W2056372113 @default.
- W2912530199 cites W2058305271 @default.
- W2912530199 cites W2061253660 @default.
- W2912530199 cites W2061576204 @default.
- W2912530199 cites W2063962756 @default.
- W2912530199 cites W2064707511 @default.
- W2912530199 cites W2078556381 @default.
- W2912530199 cites W2096457735 @default.
- W2912530199 cites W2100234623 @default.
- W2912530199 cites W2108900923 @default.
- W2912530199 cites W2149949631 @default.
- W2912530199 cites W2164531580 @default.
- W2912530199 cites W2172000360 @default.
- W2912530199 cites W2229247592 @default.
- W2912530199 cites W2235523093 @default.
- W2912530199 cites W2275598605 @default.
- W2912530199 cites W2290770656 @default.
- W2912530199 cites W2404812871 @default.
- W2912530199 cites W2428965527 @default.
- W2912530199 cites W2465774274 @default.
- W2912530199 cites W2485954569 @default.
- W2912530199 cites W2519099455 @default.
- W2912530199 cites W2525221147 @default.
- W2912530199 cites W2533184906 @default.
- W2912530199 cites W2536352601 @default.
- W2912530199 cites W2546944464 @default.
- W2912530199 cites W2564782580 @default.
- W2912530199 cites W2576857800 @default.
- W2912530199 cites W2579362932 @default.
- W2912530199 cites W2598236886 @default.
- W2912530199 cites W2599182484 @default.
- W2912530199 cites W2637404261 @default.
- W2912530199 cites W2701556738 @default.
- W2912530199 cites W2734476184 @default.
- W2912530199 cites W2734709986 @default.
- W2912530199 cites W2744658455 @default.
- W2912530199 cites W2750216653 @default.
- W2912530199 cites W2759589131 @default.
- W2912530199 cites W2762448145 @default.
- W2912530199 cites W2763471831 @default.
- W2912530199 cites W2766591056 @default.
- W2912530199 cites W2766848342 @default.
- W2912530199 cites W2768529727 @default.
- W2912530199 cites W2774275461 @default.
- W2912530199 cites W2787485307 @default.
- W2912530199 cites W2789524143 @default.
- W2912530199 cites W2789587241 @default.
- W2912530199 cites W2791575870 @default.
- W2912530199 cites W2791867717 @default.
- W2912530199 cites W2793006349 @default.
- W2912530199 cites W2796486101 @default.
- W2912530199 cites W2801303530 @default.
- W2912530199 cites W2807079708 @default.
- W2912530199 cites W2809100241 @default.
- W2912530199 cites W2885971559 @default.
- W2912530199 cites W2887392554 @default.
- W2912530199 cites W2892057769 @default.
- W2912530199 cites W2894754687 @default.
- W2912530199 cites W2895333097 @default.
- W2912530199 cites W2898491665 @default.
- W2912530199 cites W2905707672 @default.
- W2912530199 cites W2963062226 @default.
- W2912530199 cites W2963516899 @default.
- W2912530199 cites W76120228 @default.
- W2912530199 doi "https://doi.org/10.1002/jemt.23220" @default.
- W2912530199 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30768826" @default.
- W2912530199 hasPublicationYear "2019" @default.
- W2912530199 type Work @default.
- W2912530199 sameAs 2912530199 @default.
- W2912530199 citedByCount "63" @default.
- W2912530199 countsByYear W29125301992019 @default.
- W2912530199 countsByYear W29125301992020 @default.
- W2912530199 countsByYear W29125301992021 @default.