Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912532411> ?p ?o ?g. }
- W2912532411 endingPage "1578" @default.
- W2912532411 startingPage "1545" @default.
- W2912532411 abstract "As an extension to the well-established stationary elliptic partial differential equation (PDE) with random continuous coefficients we study a time-dependent advection-diffusion problem, where the coefficients may have random spatial discontinuities. In a subsurface flow model, the randomness in a parabolic equation may account for insufficient measurements or uncertain material procurement, while the discontinuities could represent transitions in heterogeneous media. Specifically, a scenario with coupled advection and diffusion coefficients that are modeled as sums of continuous random fields and discontinuous jump components are considered. The respective coefficient functions allow a very flexible modeling, however, they also complicate the analysis and numerical approximation of the corresponding random parabolic PDE. We show that the model problem is indeed well-posed under mild assumptions and show measurability of the pathwise solution. For the numerical approximation we employ a sample-adapted, pathwise discretization scheme based on a finite element approach. This semi-discrete method accounts for the discontinuities in each sample, but leads to stochastic, finite-dimensional approximation spaces. We ensure measurability of the semi-discrete solution, which in turn enables us to derive moments bounds on the mean-squared approximation error. By coupling this semi-discrete approach with suitable coefficient approximation and a stable time stepping, we obtain a fully discrete algorithm to solve the random parabolic PDE. We provide an overall error bound for this scheme and illustrate our results with several numerical experiments." @default.
- W2912532411 created "2019-02-21" @default.
- W2912532411 creator A5007089778 @default.
- W2912532411 creator A5037077185 @default.
- W2912532411 date "2022-07-20" @default.
- W2912532411 modified "2023-09-26" @default.
- W2912532411 title "Numerical analysis for time-dependent advection-diffusion problems with random discontinuous coefficients" @default.
- W2912532411 cites W1573375280 @default.
- W2912532411 cites W1813275832 @default.
- W2912532411 cites W1855169650 @default.
- W2912532411 cites W1971634471 @default.
- W2912532411 cites W1978475940 @default.
- W2912532411 cites W1983156129 @default.
- W2912532411 cites W1986587390 @default.
- W2912532411 cites W2002926750 @default.
- W2912532411 cites W2011095781 @default.
- W2912532411 cites W2011391205 @default.
- W2912532411 cites W2012240233 @default.
- W2912532411 cites W2033721384 @default.
- W2912532411 cites W2036766781 @default.
- W2912532411 cites W2044147726 @default.
- W2912532411 cites W2047300539 @default.
- W2912532411 cites W2051344283 @default.
- W2912532411 cites W2055460625 @default.
- W2912532411 cites W2062997093 @default.
- W2912532411 cites W2072282162 @default.
- W2912532411 cites W2079884585 @default.
- W2912532411 cites W2081656419 @default.
- W2912532411 cites W2083754610 @default.
- W2912532411 cites W2083845086 @default.
- W2912532411 cites W2094168343 @default.
- W2912532411 cites W2105425058 @default.
- W2912532411 cites W2127351643 @default.
- W2912532411 cites W2170543378 @default.
- W2912532411 cites W2342750049 @default.
- W2912532411 cites W2477264281 @default.
- W2912532411 cites W2538426846 @default.
- W2912532411 cites W2766099653 @default.
- W2912532411 cites W2962962060 @default.
- W2912532411 cites W2963624496 @default.
- W2912532411 cites W2963645054 @default.
- W2912532411 cites W2964025847 @default.
- W2912532411 cites W3021293439 @default.
- W2912532411 cites W4254035729 @default.
- W2912532411 doi "https://doi.org/10.1051/m2an/2022054" @default.
- W2912532411 hasPublicationYear "2022" @default.
- W2912532411 type Work @default.
- W2912532411 sameAs 2912532411 @default.
- W2912532411 citedByCount "4" @default.
- W2912532411 countsByYear W29125324112019 @default.
- W2912532411 countsByYear W29125324112021 @default.
- W2912532411 countsByYear W29125324112022 @default.
- W2912532411 countsByYear W29125324112023 @default.
- W2912532411 crossrefType "journal-article" @default.
- W2912532411 hasAuthorship W2912532411A5007089778 @default.
- W2912532411 hasAuthorship W2912532411A5037077185 @default.
- W2912532411 hasBestOaLocation W29125324111 @default.
- W2912532411 hasConcept C105795698 @default.
- W2912532411 hasConcept C121332964 @default.
- W2912532411 hasConcept C125112378 @default.
- W2912532411 hasConcept C130402806 @default.
- W2912532411 hasConcept C134306372 @default.
- W2912532411 hasConcept C135628077 @default.
- W2912532411 hasConcept C15627037 @default.
- W2912532411 hasConcept C186867907 @default.
- W2912532411 hasConcept C28826006 @default.
- W2912532411 hasConcept C33923547 @default.
- W2912532411 hasConcept C48753275 @default.
- W2912532411 hasConcept C5072599 @default.
- W2912532411 hasConcept C73000952 @default.
- W2912532411 hasConcept C93779851 @default.
- W2912532411 hasConcept C97355855 @default.
- W2912532411 hasConceptScore W2912532411C105795698 @default.
- W2912532411 hasConceptScore W2912532411C121332964 @default.
- W2912532411 hasConceptScore W2912532411C125112378 @default.
- W2912532411 hasConceptScore W2912532411C130402806 @default.
- W2912532411 hasConceptScore W2912532411C134306372 @default.
- W2912532411 hasConceptScore W2912532411C135628077 @default.
- W2912532411 hasConceptScore W2912532411C15627037 @default.
- W2912532411 hasConceptScore W2912532411C186867907 @default.
- W2912532411 hasConceptScore W2912532411C28826006 @default.
- W2912532411 hasConceptScore W2912532411C33923547 @default.
- W2912532411 hasConceptScore W2912532411C48753275 @default.
- W2912532411 hasConceptScore W2912532411C5072599 @default.
- W2912532411 hasConceptScore W2912532411C73000952 @default.
- W2912532411 hasConceptScore W2912532411C93779851 @default.
- W2912532411 hasConceptScore W2912532411C97355855 @default.
- W2912532411 hasFunder F4320320879 @default.
- W2912532411 hasIssue "5" @default.
- W2912532411 hasLocation W29125324111 @default.
- W2912532411 hasLocation W29125324112 @default.
- W2912532411 hasLocation W29125324113 @default.
- W2912532411 hasLocation W29125324114 @default.
- W2912532411 hasOpenAccess W2912532411 @default.
- W2912532411 hasPrimaryLocation W29125324111 @default.
- W2912532411 hasRelatedWork W1982177196 @default.
- W2912532411 hasRelatedWork W2056066177 @default.
- W2912532411 hasRelatedWork W2073970878 @default.