Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912542961> ?p ?o ?g. }
- W2912542961 abstract "It is not uncommon that meta-heuristic algorithms contain some intrinsic parameters, the optimal configuration of which is crucial for achieving their peak performance. However, evaluating the effectiveness of a configuration is expensive, as it involves many costly runs of the target algorithm. Perhaps surprisingly, it is possible to build a cheap-to-evaluate surrogate that models the algorithm's empirical performance as a function of its parameters. Such surrogates constitute an important building block for understanding algorithm performance, algorithm portfolio/selection, and the automatic algorithm configuration. In principle, many off-the-shelf machine learning techniques can be used to build surrogates. In this paper, we take the differential evolution (DE) as the baseline algorithm for proof-of-concept study. Regression models are trained to model the DE's empirical performance given a parameter configuration. In particular, we evaluate and compare four popular regression algorithms both in terms of how well they predict the empirical performance with respect to a particular parameter configuration, and also how well they approximate the parameter versus the empirical performance landscapes." @default.
- W2912542961 created "2019-02-21" @default.
- W2912542961 creator A5017100408 @default.
- W2912542961 creator A5025285243 @default.
- W2912542961 creator A5071113174 @default.
- W2912542961 date "2019-01-30" @default.
- W2912542961 modified "2023-09-25" @default.
- W2912542961 title "Which Surrogate Works for Empirical Performance Modelling? A Case Study with Differential Evolution" @default.
- W2912542961 cites W1539741229 @default.
- W2912542961 cites W1548010335 @default.
- W2912542961 cites W1595159159 @default.
- W2912542961 cites W1662894842 @default.
- W2912542961 cites W1974613912 @default.
- W2912542961 cites W1982531849 @default.
- W2912542961 cites W2011048370 @default.
- W2912542961 cites W2011174137 @default.
- W2912542961 cites W2017718774 @default.
- W2912542961 cites W2018044188 @default.
- W2912542961 cites W2029467044 @default.
- W2912542961 cites W2035960005 @default.
- W2912542961 cites W2052984131 @default.
- W2912542961 cites W2082365152 @default.
- W2912542961 cites W2083457599 @default.
- W2912542961 cites W2090136295 @default.
- W2912542961 cites W2097998348 @default.
- W2912542961 cites W2102539288 @default.
- W2912542961 cites W2117643431 @default.
- W2912542961 cites W2131241448 @default.
- W2912542961 cites W2132181343 @default.
- W2912542961 cites W2132544738 @default.
- W2912542961 cites W2137340504 @default.
- W2912542961 cites W2141119792 @default.
- W2912542961 cites W2143668817 @default.
- W2912542961 cites W2156194072 @default.
- W2912542961 cites W2162145193 @default.
- W2912542961 cites W2242858139 @default.
- W2912542961 cites W2468065612 @default.
- W2912542961 cites W2511789913 @default.
- W2912542961 cites W2515885532 @default.
- W2912542961 cites W2551043114 @default.
- W2912542961 cites W2581384695 @default.
- W2912542961 cites W2732227267 @default.
- W2912542961 cites W2756578209 @default.
- W2912542961 cites W2775233965 @default.
- W2912542961 cites W2906148503 @default.
- W2912542961 cites W2906642565 @default.
- W2912542961 cites W2962947982 @default.
- W2912542961 cites W2963014601 @default.
- W2912542961 cites W2964281761 @default.
- W2912542961 cites W60686164 @default.
- W2912542961 cites W63608182 @default.
- W2912542961 doi "https://doi.org/10.48550/arxiv.1901.11120" @default.
- W2912542961 hasPublicationYear "2019" @default.
- W2912542961 type Work @default.
- W2912542961 sameAs 2912542961 @default.
- W2912542961 citedByCount "0" @default.
- W2912542961 crossrefType "posted-content" @default.
- W2912542961 hasAuthorship W2912542961A5017100408 @default.
- W2912542961 hasAuthorship W2912542961A5025285243 @default.
- W2912542961 hasAuthorship W2912542961A5071113174 @default.
- W2912542961 hasBestOaLocation W29125429611 @default.
- W2912542961 hasConcept C105795698 @default.
- W2912542961 hasConcept C111368507 @default.
- W2912542961 hasConcept C11413529 @default.
- W2912542961 hasConcept C119857082 @default.
- W2912542961 hasConcept C120936955 @default.
- W2912542961 hasConcept C126255220 @default.
- W2912542961 hasConcept C12725497 @default.
- W2912542961 hasConcept C127313418 @default.
- W2912542961 hasConcept C131675550 @default.
- W2912542961 hasConcept C14036430 @default.
- W2912542961 hasConcept C154945302 @default.
- W2912542961 hasConcept C173801870 @default.
- W2912542961 hasConcept C2524010 @default.
- W2912542961 hasConcept C2777115002 @default.
- W2912542961 hasConcept C2777210771 @default.
- W2912542961 hasConcept C33923547 @default.
- W2912542961 hasConcept C41008148 @default.
- W2912542961 hasConcept C44154836 @default.
- W2912542961 hasConcept C74750220 @default.
- W2912542961 hasConcept C78458016 @default.
- W2912542961 hasConcept C81917197 @default.
- W2912542961 hasConcept C86803240 @default.
- W2912542961 hasConceptScore W2912542961C105795698 @default.
- W2912542961 hasConceptScore W2912542961C111368507 @default.
- W2912542961 hasConceptScore W2912542961C11413529 @default.
- W2912542961 hasConceptScore W2912542961C119857082 @default.
- W2912542961 hasConceptScore W2912542961C120936955 @default.
- W2912542961 hasConceptScore W2912542961C126255220 @default.
- W2912542961 hasConceptScore W2912542961C12725497 @default.
- W2912542961 hasConceptScore W2912542961C127313418 @default.
- W2912542961 hasConceptScore W2912542961C131675550 @default.
- W2912542961 hasConceptScore W2912542961C14036430 @default.
- W2912542961 hasConceptScore W2912542961C154945302 @default.
- W2912542961 hasConceptScore W2912542961C173801870 @default.
- W2912542961 hasConceptScore W2912542961C2524010 @default.
- W2912542961 hasConceptScore W2912542961C2777115002 @default.
- W2912542961 hasConceptScore W2912542961C2777210771 @default.
- W2912542961 hasConceptScore W2912542961C33923547 @default.
- W2912542961 hasConceptScore W2912542961C41008148 @default.