Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912552022> ?p ?o ?g. }
- W2912552022 endingPage "262" @default.
- W2912552022 startingPage "246" @default.
- W2912552022 abstract "We present a new fully automatic pipeline for generating shading effects on hand-drawn characters. Our method takes as input a single digitized sketch of any resolution and outputs a dense normal map estimation suitable for rendering without requiring any human input. At the heart of our method lies a deep residual, encoder-decoder convolutional network. The input sketch is first sampled using several equally sized 3-channel windows, with each window capturing a local area of interest at 3 different scales. Each window is then passed through the previously trained network for normal estimation. Finally, network outputs are arranged together to form a full-size normal map of the input sketch. We also present an efficient and effective way to generate a rich set of training data. Resulting renders offer a rich quality without any effort from the 2D artist. We show both quantitative and qualitative results demonstrating the effectiveness and quality of our network and method." @default.
- W2912552022 created "2019-02-21" @default.
- W2912552022 creator A5029189732 @default.
- W2912552022 creator A5039590143 @default.
- W2912552022 creator A5069857775 @default.
- W2912552022 creator A5083840902 @default.
- W2912552022 date "2019-01-01" @default.
- W2912552022 modified "2023-09-30" @default.
- W2912552022 title "Deep Normal Estimation for Automatic Shading of Hand-Drawn Characters" @default.
- W2912552022 cites W10311529 @default.
- W2912552022 cites W1539790409 @default.
- W2912552022 cites W1899309388 @default.
- W2912552022 cites W1901129140 @default.
- W2912552022 cites W1903029394 @default.
- W2912552022 cites W1905829557 @default.
- W2912552022 cites W1965902026 @default.
- W2912552022 cites W1969874727 @default.
- W2912552022 cites W1985664898 @default.
- W2912552022 cites W1989391484 @default.
- W2912552022 cites W1996135899 @default.
- W2912552022 cites W2003745532 @default.
- W2912552022 cites W2028105561 @default.
- W2912552022 cites W2036441802 @default.
- W2912552022 cites W2040692352 @default.
- W2912552022 cites W2050543800 @default.
- W2912552022 cites W2053826520 @default.
- W2912552022 cites W2060747675 @default.
- W2912552022 cites W2062962742 @default.
- W2912552022 cites W2072438795 @default.
- W2912552022 cites W2074346721 @default.
- W2912552022 cites W2089985502 @default.
- W2912552022 cites W2098775333 @default.
- W2912552022 cites W2111869537 @default.
- W2912552022 cites W2116567847 @default.
- W2912552022 cites W2120654790 @default.
- W2912552022 cites W2150978590 @default.
- W2912552022 cites W2179146197 @default.
- W2912552022 cites W2272752931 @default.
- W2912552022 cites W2473464331 @default.
- W2912552022 cites W2479249490 @default.
- W2912552022 cites W2495603374 @default.
- W2912552022 cites W2501192503 @default.
- W2912552022 cites W2604662340 @default.
- W2912552022 cites W2614154668 @default.
- W2912552022 cites W2621283638 @default.
- W2912552022 cites W2886207622 @default.
- W2912552022 cites W2962809185 @default.
- W2912552022 cites W2963600949 @default.
- W2912552022 cites W2963784525 @default.
- W2912552022 cites W3136365853 @default.
- W2912552022 cites W4205191326 @default.
- W2912552022 cites W4243595132 @default.
- W2912552022 cites W4300629176 @default.
- W2912552022 cites W634845754 @default.
- W2912552022 doi "https://doi.org/10.1007/978-3-030-11015-4_20" @default.
- W2912552022 hasPublicationYear "2019" @default.
- W2912552022 type Work @default.
- W2912552022 sameAs 2912552022 @default.
- W2912552022 citedByCount "15" @default.
- W2912552022 countsByYear W29125520222019 @default.
- W2912552022 countsByYear W29125520222020 @default.
- W2912552022 countsByYear W29125520222021 @default.
- W2912552022 countsByYear W29125520222022 @default.
- W2912552022 countsByYear W29125520222023 @default.
- W2912552022 crossrefType "book-chapter" @default.
- W2912552022 hasAuthorship W2912552022A5029189732 @default.
- W2912552022 hasAuthorship W2912552022A5039590143 @default.
- W2912552022 hasAuthorship W2912552022A5069857775 @default.
- W2912552022 hasAuthorship W2912552022A5083840902 @default.
- W2912552022 hasConcept C121684516 @default.
- W2912552022 hasConcept C127413603 @default.
- W2912552022 hasConcept C154945302 @default.
- W2912552022 hasConcept C177515723 @default.
- W2912552022 hasConcept C201995342 @default.
- W2912552022 hasConcept C31972630 @default.
- W2912552022 hasConcept C41008148 @default.
- W2912552022 hasConcept C96250715 @default.
- W2912552022 hasConceptScore W2912552022C121684516 @default.
- W2912552022 hasConceptScore W2912552022C127413603 @default.
- W2912552022 hasConceptScore W2912552022C154945302 @default.
- W2912552022 hasConceptScore W2912552022C177515723 @default.
- W2912552022 hasConceptScore W2912552022C201995342 @default.
- W2912552022 hasConceptScore W2912552022C31972630 @default.
- W2912552022 hasConceptScore W2912552022C41008148 @default.
- W2912552022 hasConceptScore W2912552022C96250715 @default.
- W2912552022 hasLocation W29125520221 @default.
- W2912552022 hasOpenAccess W2912552022 @default.
- W2912552022 hasPrimaryLocation W29125520221 @default.
- W2912552022 hasRelatedWork W1891287906 @default.
- W2912552022 hasRelatedWork W1969923398 @default.
- W2912552022 hasRelatedWork W2022488904 @default.
- W2912552022 hasRelatedWork W2036807459 @default.
- W2912552022 hasRelatedWork W2059906277 @default.
- W2912552022 hasRelatedWork W2150297019 @default.
- W2912552022 hasRelatedWork W2160550300 @default.
- W2912552022 hasRelatedWork W2166044122 @default.
- W2912552022 hasRelatedWork W2772917594 @default.
- W2912552022 hasRelatedWork W2945473631 @default.