Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912552946> ?p ?o ?g. }
- W2912552946 endingPage "735" @default.
- W2912552946 startingPage "735" @default.
- W2912552946 abstract "This study focuses on the ability of the global Land Data Assimilation System, LDAS-Monde, to improve the representation of land surface variables (LSVs) over Burkina-Faso through the joint assimilation of satellite derived surface soil moisture (SSM) and leaf area index (LAI) from January 2001 to June 2018. The LDAS-Monde offline system is forced by the latest European Centre for Medium-Range Weather Forecasts (ECMWF) atmospheric reanalysis ERA5 as well as ERA-Interim former reanalysis, leading to reanalyses of LSVs at 0.25° × 0.25° and 0.50° × 0.50° spatial resolution, respectively. Within LDAS-Monde, SSM and LAI observations from the Copernicus Global Land Service (CGLS) are assimilated with a simplified extended Kalman filter (SEKF) using the CO2-responsive version of the ISBA (Interactions between Soil, Biosphere, and Atmosphere) land surface model (LSM). First, it is shown that ERA5 better represents precipitation and incoming solar radiation than ERA-Interim former reanalysis from ECMWF based on in situ data. Results of four experiments are then compared: Open-loop simulation (i.e., no assimilation) and analysis (i.e., joint assimilation of SSM and LAI) forced by either ERA5 or ERA-Interim. After jointly assimilating SSM and LAI, it is noticed that the assimilation is able to impact soil moisture in the first top soil layers (the first 20 cm), and also in deeper soil layers (from 20 cm to 60 cm and below), as reflected by the structure of the SEKF Jacobians. The added value of using ERA5 reanalysis over ERA-Interim when used in LDAS-Monde is highlighted. The assimilation is able to improve the simulation of both SSM and LAI: The analyses add skill to both configurations, indicating the healthy behavior of LDAS-Monde. For LAI in particular, the southern region of the domain (dominated by a Sudan-Guinean climate) highlights a strong impact of the assimilation compared to the other two sub-regions of Burkina-Faso (dominated by Sahelian and Sudan-Sahelian climates). In the southern part of the domain, differences between the model and the observations are the largest, prior to any assimilation. These differences are linked to the model failing to represent the behavior of some specific vegetation species, which are known to put on leaves before the first rains of the season. The LDAS-Monde analysis is very efficient at compensating for this model weakness. Evapotranspiration estimates from the Global Land Evaporation Amsterdam Model (GLEAM) project as well as upscaled carbon uptake from the FLUXCOM project and sun-induced fluorescence from the Global Ozone Monitoring Experiment-2 (GOME-2) are used in the evaluation process, again demonstrating improvements in the representation of evapotranspiration and gross primary production after assimilation." @default.
- W2912552946 created "2019-02-21" @default.
- W2912552946 creator A5002396064 @default.
- W2912552946 creator A5008952431 @default.
- W2912552946 creator A5041265687 @default.
- W2912552946 creator A5042113874 @default.
- W2912552946 creator A5045590963 @default.
- W2912552946 creator A5046522270 @default.
- W2912552946 creator A5047193088 @default.
- W2912552946 creator A5057871628 @default.
- W2912552946 creator A5068612716 @default.
- W2912552946 creator A5082151754 @default.
- W2912552946 creator A5084850559 @default.
- W2912552946 date "2019-03-26" @default.
- W2912552946 modified "2023-10-18" @default.
- W2912552946 title "Towards a Long-Term Reanalysis of Land Surface Variables over Western Africa: LDAS-Monde Applied over Burkina Faso from 2001 to 2018" @default.
- W2912552946 cites W1570422396 @default.
- W2912552946 cites W1602268079 @default.
- W2912552946 cites W1791467465 @default.
- W2912552946 cites W1804767547 @default.
- W2912552946 cites W1827199582 @default.
- W2912552946 cites W1964989255 @default.
- W2912552946 cites W1974694745 @default.
- W2912552946 cites W1975543035 @default.
- W2912552946 cites W1983668139 @default.
- W2912552946 cites W1989902140 @default.
- W2912552946 cites W1990599481 @default.
- W2912552946 cites W1999809324 @default.
- W2912552946 cites W2001281641 @default.
- W2912552946 cites W2008307544 @default.
- W2912552946 cites W2033408778 @default.
- W2912552946 cites W2035235584 @default.
- W2912552946 cites W2037561217 @default.
- W2912552946 cites W2039363399 @default.
- W2912552946 cites W2044826415 @default.
- W2912552946 cites W2047366175 @default.
- W2912552946 cites W2049760535 @default.
- W2912552946 cites W2051416171 @default.
- W2912552946 cites W2052411293 @default.
- W2912552946 cites W2052866879 @default.
- W2912552946 cites W2053220508 @default.
- W2912552946 cites W2053574870 @default.
- W2912552946 cites W2063422594 @default.
- W2912552946 cites W2066617922 @default.
- W2912552946 cites W2083699099 @default.
- W2912552946 cites W2089585018 @default.
- W2912552946 cites W2089704555 @default.
- W2912552946 cites W2090592000 @default.
- W2912552946 cites W2094662622 @default.
- W2912552946 cites W2095893221 @default.
- W2912552946 cites W2104642399 @default.
- W2912552946 cites W2113937464 @default.
- W2912552946 cites W2114004961 @default.
- W2912552946 cites W2114688600 @default.
- W2912552946 cites W2119132330 @default.
- W2912552946 cites W2121745948 @default.
- W2912552946 cites W2127035833 @default.
- W2912552946 cites W2137750315 @default.
- W2912552946 cites W2141156530 @default.
- W2912552946 cites W2163816662 @default.
- W2912552946 cites W2164603125 @default.
- W2912552946 cites W2165296652 @default.
- W2912552946 cites W2166609657 @default.
- W2912552946 cites W2168186402 @default.
- W2912552946 cites W2169840829 @default.
- W2912552946 cites W2236687958 @default.
- W2912552946 cites W2315586935 @default.
- W2912552946 cites W2381350134 @default.
- W2912552946 cites W2426836323 @default.
- W2912552946 cites W2485420366 @default.
- W2912552946 cites W2560092559 @default.
- W2912552946 cites W2572951874 @default.
- W2912552946 cites W2606762649 @default.
- W2912552946 cites W2607386609 @default.
- W2912552946 cites W2611772571 @default.
- W2912552946 cites W2613288116 @default.
- W2912552946 cites W2619645687 @default.
- W2912552946 cites W2765724874 @default.
- W2912552946 cites W2790035540 @default.
- W2912552946 cites W2790632715 @default.
- W2912552946 cites W2793345439 @default.
- W2912552946 cites W2795397383 @default.
- W2912552946 cites W2802790096 @default.
- W2912552946 cites W2884349873 @default.
- W2912552946 cites W2886763937 @default.
- W2912552946 cites W2887111807 @default.
- W2912552946 cites W2891479069 @default.
- W2912552946 cites W2893539713 @default.
- W2912552946 cites W2905043775 @default.
- W2912552946 cites W2909460013 @default.
- W2912552946 cites W2910781923 @default.
- W2912552946 cites W2916882450 @default.
- W2912552946 doi "https://doi.org/10.3390/rs11060735" @default.
- W2912552946 hasPublicationYear "2019" @default.
- W2912552946 type Work @default.
- W2912552946 sameAs 2912552946 @default.
- W2912552946 citedByCount "14" @default.
- W2912552946 countsByYear W29125529462020 @default.