Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912553012> ?p ?o ?g. }
- W2912553012 endingPage "46" @default.
- W2912553012 startingPage "34" @default.
- W2912553012 abstract "Modern microscopes can acquire multi-channel large histological data from tissues of human beings or animals, which contain rich biomedical information for disease diagnosis and biological feature analysis. However, due to the large size, fuzzy tissue structure, and complicated multiple elements integrated in the image color space, it is still a challenge for current software systems to effectively calculate histological data, show the inner tissue structures and unveil hidden biomedical information. Therefore, we developed new algorithms and a software platform to address this issue.This paper presents a multi-channel biomedical data computing and visualization system that can efficiently process large 3D histological images acquired from high-resolution microscopes. A novelty of our system is that it can dynamically display a volume of interest and extract tissue information using a layer-based data navigation scheme. During the data exploring process, the actual resolution of the loaded data can be dynamically determined and updated, and data rendering is synchronized in four display windows at each data layer, where 2D textures are extracted from the imaging volume and mapped onto the displayed clipping planes in 3D space.To test the efficiency and scalability of this system, we performed extensive evaluations using several different hardware systems and large histological color datasets acquired from a CryoViz 3D digital system. The experimental results demonstrated that our system can deliver interactive data navigation speed and display detailed imaging information in real time, which is beyond the capability of commonly available biomedical data exploration software platforms.Taking advantage of both CPU (central processing unit) main memory and GPU (graphics processing unit) graphics memory, the presented software platform can efficiently compute, process and visualize very large biomedical data and enhance data information. The performance of this system can satisfactorily address the challenges of navigating and interrogating volumetric multi-spectral large histological image at multiple resolution levels." @default.
- W2912553012 created "2019-02-21" @default.
- W2912553012 creator A5004966232 @default.
- W2912553012 creator A5026984704 @default.
- W2912553012 creator A5063193089 @default.
- W2912553012 date "2019-03-01" @default.
- W2912553012 modified "2023-09-23" @default.
- W2912553012 title "Layer-based visualization and biomedical information exploration of multi-channel large histological data" @default.
- W2912553012 cites W1541250240 @default.
- W2912553012 cites W1566579818 @default.
- W2912553012 cites W1965451568 @default.
- W2912553012 cites W1969169109 @default.
- W2912553012 cites W1975899001 @default.
- W2912553012 cites W1977838454 @default.
- W2912553012 cites W1979382226 @default.
- W2912553012 cites W1980784430 @default.
- W2912553012 cites W1993227690 @default.
- W2912553012 cites W2001749563 @default.
- W2912553012 cites W2018227909 @default.
- W2912553012 cites W2026616100 @default.
- W2912553012 cites W2037851175 @default.
- W2912553012 cites W2042436171 @default.
- W2912553012 cites W2058417985 @default.
- W2912553012 cites W2081903382 @default.
- W2912553012 cites W2094944422 @default.
- W2912553012 cites W2103243046 @default.
- W2912553012 cites W2119577952 @default.
- W2912553012 cites W2121075186 @default.
- W2912553012 cites W2139549071 @default.
- W2912553012 cites W2142642546 @default.
- W2912553012 cites W2144034286 @default.
- W2912553012 cites W2153615563 @default.
- W2912553012 cites W2162609414 @default.
- W2912553012 cites W2163022769 @default.
- W2912553012 cites W2204252976 @default.
- W2912553012 cites W2234666690 @default.
- W2912553012 cites W2281148031 @default.
- W2912553012 cites W2345060091 @default.
- W2912553012 cites W2437797956 @default.
- W2912553012 cites W2615147949 @default.
- W2912553012 cites W2618999197 @default.
- W2912553012 cites W2803405718 @default.
- W2912553012 doi "https://doi.org/10.1016/j.compmedimag.2019.01.004" @default.
- W2912553012 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30772074" @default.
- W2912553012 hasPublicationYear "2019" @default.
- W2912553012 type Work @default.
- W2912553012 sameAs 2912553012 @default.
- W2912553012 citedByCount "2" @default.
- W2912553012 countsByYear W29125530122021 @default.
- W2912553012 countsByYear W29125530122022 @default.
- W2912553012 crossrefType "journal-article" @default.
- W2912553012 hasAuthorship W2912553012A5004966232 @default.
- W2912553012 hasAuthorship W2912553012A5026984704 @default.
- W2912553012 hasAuthorship W2912553012A5063193089 @default.
- W2912553012 hasConcept C111919701 @default.
- W2912553012 hasConcept C121684516 @default.
- W2912553012 hasConcept C138885662 @default.
- W2912553012 hasConcept C154945302 @default.
- W2912553012 hasConcept C172367668 @default.
- W2912553012 hasConcept C199360897 @default.
- W2912553012 hasConcept C205711294 @default.
- W2912553012 hasConcept C2776848632 @default.
- W2912553012 hasConcept C2777522853 @default.
- W2912553012 hasConcept C2777904410 @default.
- W2912553012 hasConcept C30769735 @default.
- W2912553012 hasConcept C31972630 @default.
- W2912553012 hasConcept C36464697 @default.
- W2912553012 hasConcept C41008148 @default.
- W2912553012 hasConcept C41895202 @default.
- W2912553012 hasConcept C48044578 @default.
- W2912553012 hasConcept C77088390 @default.
- W2912553012 hasConcept C98045186 @default.
- W2912553012 hasConceptScore W2912553012C111919701 @default.
- W2912553012 hasConceptScore W2912553012C121684516 @default.
- W2912553012 hasConceptScore W2912553012C138885662 @default.
- W2912553012 hasConceptScore W2912553012C154945302 @default.
- W2912553012 hasConceptScore W2912553012C172367668 @default.
- W2912553012 hasConceptScore W2912553012C199360897 @default.
- W2912553012 hasConceptScore W2912553012C205711294 @default.
- W2912553012 hasConceptScore W2912553012C2776848632 @default.
- W2912553012 hasConceptScore W2912553012C2777522853 @default.
- W2912553012 hasConceptScore W2912553012C2777904410 @default.
- W2912553012 hasConceptScore W2912553012C30769735 @default.
- W2912553012 hasConceptScore W2912553012C31972630 @default.
- W2912553012 hasConceptScore W2912553012C36464697 @default.
- W2912553012 hasConceptScore W2912553012C41008148 @default.
- W2912553012 hasConceptScore W2912553012C41895202 @default.
- W2912553012 hasConceptScore W2912553012C48044578 @default.
- W2912553012 hasConceptScore W2912553012C77088390 @default.
- W2912553012 hasConceptScore W2912553012C98045186 @default.
- W2912553012 hasLocation W29125530121 @default.
- W2912553012 hasLocation W29125530122 @default.
- W2912553012 hasOpenAccess W2912553012 @default.
- W2912553012 hasPrimaryLocation W29125530121 @default.
- W2912553012 hasRelatedWork W1969548907 @default.
- W2912553012 hasRelatedWork W1986801238 @default.
- W2912553012 hasRelatedWork W2025490294 @default.
- W2912553012 hasRelatedWork W2052459122 @default.