Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912555761> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W2912555761 endingPage "426" @default.
- W2912555761 startingPage "410" @default.
- W2912555761 abstract "The removal of Multi-Path Interference (MPI) is one of the major open challenges in depth estimation with Time-of-Flight (ToF) cameras. In this paper we propose a novel method for MPI removal and depth refinement exploiting an ad-hoc deep learning architecture working on data from a multi-frequency ToF camera. In order to estimate the MPI we use a Convolutional Neural Network (CNN) made of two sub-networks: a coarse network analyzing the global structure of the data at a lower resolution and a fine one exploiting the output of the coarse network in order to remove the MPI while preserving the small details. The critical issue of the lack of ToF data with ground truth is solved by training the CNN with synthetic information. Finally, the residual zero-mean error is removed with an adaptive bilateral filter guided from a noise model for the camera. Experimental results prove the effectiveness of the proposed approach on both synthetic and real data." @default.
- W2912555761 created "2019-02-21" @default.
- W2912555761 creator A5010490677 @default.
- W2912555761 creator A5070777118 @default.
- W2912555761 date "2019-01-01" @default.
- W2912555761 modified "2023-09-25" @default.
- W2912555761 title "Deep Learning for Multi-path Error Removal in ToF Sensors" @default.
- W2912555761 cites W134016981 @default.
- W2912555761 cites W1826919311 @default.
- W2912555761 cites W1905829557 @default.
- W2912555761 cites W1937534317 @default.
- W2912555761 cites W1979306294 @default.
- W2912555761 cites W1983193557 @default.
- W2912555761 cites W2023021573 @default.
- W2912555761 cites W2028868706 @default.
- W2912555761 cites W2042375436 @default.
- W2912555761 cites W2100925004 @default.
- W2912555761 cites W2122981824 @default.
- W2912555761 cites W2168894291 @default.
- W2912555761 cites W2177564859 @default.
- W2912555761 cites W2318193839 @default.
- W2912555761 cites W2440384215 @default.
- W2912555761 cites W2486979733 @default.
- W2912555761 cites W2520340802 @default.
- W2912555761 cites W2562637781 @default.
- W2912555761 cites W2768145272 @default.
- W2912555761 cites W2799224898 @default.
- W2912555761 cites W2884480653 @default.
- W2912555761 cites W2914535147 @default.
- W2912555761 cites W3102597069 @default.
- W2912555761 cites W3106403396 @default.
- W2912555761 doi "https://doi.org/10.1007/978-3-030-11015-4_30" @default.
- W2912555761 hasPublicationYear "2019" @default.
- W2912555761 type Work @default.
- W2912555761 sameAs 2912555761 @default.
- W2912555761 citedByCount "14" @default.
- W2912555761 countsByYear W29125557612019 @default.
- W2912555761 countsByYear W29125557612020 @default.
- W2912555761 countsByYear W29125557612021 @default.
- W2912555761 countsByYear W29125557612022 @default.
- W2912555761 countsByYear W29125557612023 @default.
- W2912555761 crossrefType "book-chapter" @default.
- W2912555761 hasAuthorship W2912555761A5010490677 @default.
- W2912555761 hasAuthorship W2912555761A5070777118 @default.
- W2912555761 hasConcept C106131492 @default.
- W2912555761 hasConcept C108583219 @default.
- W2912555761 hasConcept C11413529 @default.
- W2912555761 hasConcept C115961682 @default.
- W2912555761 hasConcept C146849305 @default.
- W2912555761 hasConcept C154945302 @default.
- W2912555761 hasConcept C155512373 @default.
- W2912555761 hasConcept C160920958 @default.
- W2912555761 hasConcept C199360897 @default.
- W2912555761 hasConcept C2777735758 @default.
- W2912555761 hasConcept C31972630 @default.
- W2912555761 hasConcept C41008148 @default.
- W2912555761 hasConcept C81363708 @default.
- W2912555761 hasConcept C99498987 @default.
- W2912555761 hasConceptScore W2912555761C106131492 @default.
- W2912555761 hasConceptScore W2912555761C108583219 @default.
- W2912555761 hasConceptScore W2912555761C11413529 @default.
- W2912555761 hasConceptScore W2912555761C115961682 @default.
- W2912555761 hasConceptScore W2912555761C146849305 @default.
- W2912555761 hasConceptScore W2912555761C154945302 @default.
- W2912555761 hasConceptScore W2912555761C155512373 @default.
- W2912555761 hasConceptScore W2912555761C160920958 @default.
- W2912555761 hasConceptScore W2912555761C199360897 @default.
- W2912555761 hasConceptScore W2912555761C2777735758 @default.
- W2912555761 hasConceptScore W2912555761C31972630 @default.
- W2912555761 hasConceptScore W2912555761C41008148 @default.
- W2912555761 hasConceptScore W2912555761C81363708 @default.
- W2912555761 hasConceptScore W2912555761C99498987 @default.
- W2912555761 hasLocation W29125557611 @default.
- W2912555761 hasOpenAccess W2912555761 @default.
- W2912555761 hasPrimaryLocation W29125557611 @default.
- W2912555761 hasRelatedWork W2731899572 @default.
- W2912555761 hasRelatedWork W2782645198 @default.
- W2912555761 hasRelatedWork W2999805992 @default.
- W2912555761 hasRelatedWork W3011074480 @default.
- W2912555761 hasRelatedWork W3116150086 @default.
- W2912555761 hasRelatedWork W3133861977 @default.
- W2912555761 hasRelatedWork W4200173597 @default.
- W2912555761 hasRelatedWork W4291897433 @default.
- W2912555761 hasRelatedWork W4312417841 @default.
- W2912555761 hasRelatedWork W4321369474 @default.
- W2912555761 isParatext "false" @default.
- W2912555761 isRetracted "false" @default.
- W2912555761 magId "2912555761" @default.
- W2912555761 workType "book-chapter" @default.