Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912558669> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W2912558669 endingPage "e180001" @default.
- W2912558669 startingPage "e180001" @default.
- W2912558669 abstract "To demonstrate the feasibility and performance of an object detection convolutional neural network (CNN) for fracture detection and localization on wrist radiographs.Institutional review board approval was obtained with waiver of consent for this retrospective study. A total of 7356 wrist radiographic studies were extracted from a hospital picture archiving and communication system. Radiologists annotated all radius and ulna fractures with bounding boxes. The dataset was split into training (90%) and validation (10%) sets and used to train fracture localization models for frontal and lateral images. Inception-ResNet Faster R-CNN architecture was implemented as a deep learning model. The models were tested on an unseen test set of 524 consecutive emergency department wrist radiographic studies with two radiologists in consensus as the reference standard. Per-fracture, per-image (ie, per-view), and per-study sensitivity and specificity were determined. Area under the receiver operating characteristic curve (AUC) analysis was performed.The model detected and correctly localized 310 (91.2%) of 340 and 236 (96.3%) of 245 of all radius and ulna fractures on the frontal and lateral views, respectively. The per-image sensitivity, specificity, and AUC were 95.7% (95% confidence interval [CI]: 92.4%, 97.8%), 82.5% (95% CI: 77.4%, 86.8%), and 0.918 (95% CI: 0.894, 0.941), respectively, for the frontal view and 96.7% (95% CI: 93.6%, 98.6%), 86.4% (95% CI: 81.9%, 90.2%), and 0.933 (95% CI: 0.912, 0.954), respectively, for the lateral view. The per-study sensitivity, specificity, and AUC were 98.1% (95% CI: 95.6%, 99.4%), 72.9% (95% CI: 67.1%, 78.2%), and 0.895 (95% CI: 0.870, 0.920), respectively.The ability of an object detection CNN to detect and localize radius and ulna fractures on wrist radiographs with high sensitivity and specificity was demonstrated.© RSNA, 2019." @default.
- W2912558669 created "2019-02-21" @default.
- W2912558669 creator A5008984135 @default.
- W2912558669 creator A5015949376 @default.
- W2912558669 creator A5021866532 @default.
- W2912558669 creator A5042103495 @default.
- W2912558669 creator A5070069277 @default.
- W2912558669 creator A5082544490 @default.
- W2912558669 date "2019-01-01" @default.
- W2912558669 modified "2023-10-11" @default.
- W2912558669 title "Convolutional Neural Networks for Automated Fracture Detection and Localization on Wrist Radiographs" @default.
- W2912558669 cites W1972677828 @default.
- W2912558669 cites W1979886172 @default.
- W2912558669 cites W2115733720 @default.
- W2912558669 cites W2272630658 @default.
- W2912558669 cites W2328176404 @default.
- W2912558669 cites W2557738935 @default.
- W2912558669 cites W2582555581 @default.
- W2912558669 cites W2608231518 @default.
- W2912558669 cites W2731422065 @default.
- W2912558669 cites W2733840449 @default.
- W2912558669 cites W2766766852 @default.
- W2912558669 cites W2776581140 @default.
- W2912558669 cites W2785645041 @default.
- W2912558669 cites W2793251588 @default.
- W2912558669 doi "https://doi.org/10.1148/ryai.2019180001" @default.
- W2912558669 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8017412" @default.
- W2912558669 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33937780" @default.
- W2912558669 hasPublicationYear "2019" @default.
- W2912558669 type Work @default.
- W2912558669 sameAs 2912558669 @default.
- W2912558669 citedByCount "95" @default.
- W2912558669 countsByYear W29125586692019 @default.
- W2912558669 countsByYear W29125586692020 @default.
- W2912558669 countsByYear W29125586692021 @default.
- W2912558669 countsByYear W29125586692022 @default.
- W2912558669 countsByYear W29125586692023 @default.
- W2912558669 crossrefType "journal-article" @default.
- W2912558669 hasAuthorship W2912558669A5008984135 @default.
- W2912558669 hasAuthorship W2912558669A5015949376 @default.
- W2912558669 hasAuthorship W2912558669A5021866532 @default.
- W2912558669 hasAuthorship W2912558669A5042103495 @default.
- W2912558669 hasAuthorship W2912558669A5070069277 @default.
- W2912558669 hasAuthorship W2912558669A5082544490 @default.
- W2912558669 hasBestOaLocation W29125586692 @default.
- W2912558669 hasConcept C118552586 @default.
- W2912558669 hasConcept C126322002 @default.
- W2912558669 hasConcept C126838900 @default.
- W2912558669 hasConcept C141071460 @default.
- W2912558669 hasConcept C154945302 @default.
- W2912558669 hasConcept C2777695862 @default.
- W2912558669 hasConcept C2778216619 @default.
- W2912558669 hasConcept C2780724011 @default.
- W2912558669 hasConcept C2989005 @default.
- W2912558669 hasConcept C36454342 @default.
- W2912558669 hasConcept C41008148 @default.
- W2912558669 hasConcept C44249647 @default.
- W2912558669 hasConcept C58471807 @default.
- W2912558669 hasConcept C71924100 @default.
- W2912558669 hasConcept C81363708 @default.
- W2912558669 hasConceptScore W2912558669C118552586 @default.
- W2912558669 hasConceptScore W2912558669C126322002 @default.
- W2912558669 hasConceptScore W2912558669C126838900 @default.
- W2912558669 hasConceptScore W2912558669C141071460 @default.
- W2912558669 hasConceptScore W2912558669C154945302 @default.
- W2912558669 hasConceptScore W2912558669C2777695862 @default.
- W2912558669 hasConceptScore W2912558669C2778216619 @default.
- W2912558669 hasConceptScore W2912558669C2780724011 @default.
- W2912558669 hasConceptScore W2912558669C2989005 @default.
- W2912558669 hasConceptScore W2912558669C36454342 @default.
- W2912558669 hasConceptScore W2912558669C41008148 @default.
- W2912558669 hasConceptScore W2912558669C44249647 @default.
- W2912558669 hasConceptScore W2912558669C58471807 @default.
- W2912558669 hasConceptScore W2912558669C71924100 @default.
- W2912558669 hasConceptScore W2912558669C81363708 @default.
- W2912558669 hasIssue "1" @default.
- W2912558669 hasLocation W29125586691 @default.
- W2912558669 hasLocation W29125586692 @default.
- W2912558669 hasLocation W29125586693 @default.
- W2912558669 hasOpenAccess W2912558669 @default.
- W2912558669 hasPrimaryLocation W29125586691 @default.
- W2912558669 hasRelatedWork W2004219643 @default.
- W2912558669 hasRelatedWork W2031170167 @default.
- W2912558669 hasRelatedWork W2073894843 @default.
- W2912558669 hasRelatedWork W2473524632 @default.
- W2912558669 hasRelatedWork W2514315423 @default.
- W2912558669 hasRelatedWork W2912558669 @default.
- W2912558669 hasRelatedWork W2997921868 @default.
- W2912558669 hasRelatedWork W40221015 @default.
- W2912558669 hasRelatedWork W4200283750 @default.
- W2912558669 hasRelatedWork W4223516823 @default.
- W2912558669 hasVolume "1" @default.
- W2912558669 isParatext "false" @default.
- W2912558669 isRetracted "false" @default.
- W2912558669 magId "2912558669" @default.
- W2912558669 workType "article" @default.