Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912560125> ?p ?o ?g. }
- W2912560125 abstract "Abstract Prediction of compounds that are active against a desired biological target is a common step in drug discovery efforts. Virtual screening methods seek some active-enriched fraction of a library for experimental testing. Where data are too scarce to train supervised learning models for compound prioritization, initial screening must provide the necessary data. Commonly, such an initial library is selected on the basis of chemical diversity by some pseudo-random process (for example, the first few plates of a larger library) or by selecting an entire smaller library. These approaches may not produce a sufficient number or diversity of actives. An alternative approach is to select an informer set of screening compounds on the basis of chemogenomic information from previous testing of compounds against a large number of targets. We compare different ways of using chemogenomic data to choose a small informer set of compounds based on previously measured bioactivity data. We develop this Informer-Based-Ranking (IBR) approach using the Published Kinase Inhibitor Sets (PKIS) as the chemogenomic data to select the informer sets. We test the informer compounds on a target that is not part of the chemogenomic data, then predict the activity of the remaining compounds based on the experimental informer data and the chemogenomic data. Through new chemical screening experiments, we demonstrate the utility of IBR strategies in a prospective test on two kinase targets not included in the PKIS. Using limited training data in both retrospective and prospective tests, bioactivity fingerprints based on chemogenomic data outperform chemical fingerprints in predicting active compounds in both standard virtual screening metrics and accurate identification of hits from novel chemical classes. Author Summary In the early stages of drug discovery efforts, computational models are used to predict activity and prioritize compounds for experimental testing. New targets commonly lack the data necessary to build effective models, and the screening needed to generate that experimental data can be costly. We seek to improve the efficiency of the initial screening phase, and of the process of prioritizing compounds for subsequent screening. We choose a small informer set of compounds based on publicly available prior screening data on distinct (though related) targets. We then use experimental data on these informer compounds to predict the activity of other compounds in the set against the target of interest. Computational and statistical tools are needed to identify informer compounds and to prioritize other compounds for subsequent phases of screening. Using limited training data, we find that selection of informer compounds on the basis of bioactivity data from previous screening efforts is superior to the traditional approach of selection of a chemically diverse subset of compounds. We demonstrate the success of this approach in retrospective tests on the Published Kinase Inhibitor Sets (PKIS) chemogenomic data and in prospective experimental screens against two additional non-human kinase targets." @default.
- W2912560125 created "2019-02-21" @default.
- W2912560125 creator A5007900033 @default.
- W2912560125 creator A5024496300 @default.
- W2912560125 creator A5027704697 @default.
- W2912560125 creator A5029003935 @default.
- W2912560125 creator A5037094868 @default.
- W2912560125 creator A5046109083 @default.
- W2912560125 creator A5053497181 @default.
- W2912560125 creator A5072759658 @default.
- W2912560125 creator A5076752685 @default.
- W2912560125 creator A5083226872 @default.
- W2912560125 creator A5083286341 @default.
- W2912560125 date "2019-01-28" @default.
- W2912560125 modified "2023-10-18" @default.
- W2912560125 title "Predicting kinase inhibitors using bioactivity matrix derived informer sets" @default.
- W2912560125 cites W1466286227 @default.
- W2912560125 cites W1918079945 @default.
- W2912560125 cites W1967019899 @default.
- W2912560125 cites W1986240377 @default.
- W2912560125 cites W1986684432 @default.
- W2912560125 cites W1988037271 @default.
- W2912560125 cites W2015907087 @default.
- W2912560125 cites W2031390939 @default.
- W2912560125 cites W2041788773 @default.
- W2912560125 cites W2045721491 @default.
- W2912560125 cites W2046344452 @default.
- W2912560125 cites W2050081822 @default.
- W2912560125 cites W2055955780 @default.
- W2912560125 cites W2056881083 @default.
- W2912560125 cites W2060531713 @default.
- W2912560125 cites W2067214947 @default.
- W2912560125 cites W2077946617 @default.
- W2912560125 cites W2112411768 @default.
- W2912560125 cites W2120771633 @default.
- W2912560125 cites W2132192652 @default.
- W2912560125 cites W2138019504 @default.
- W2912560125 cites W2156077095 @default.
- W2912560125 cites W2235675062 @default.
- W2912560125 cites W2273821489 @default.
- W2912560125 cites W2293092483 @default.
- W2912560125 cites W2489988882 @default.
- W2912560125 cites W2518384400 @default.
- W2912560125 cites W2562257444 @default.
- W2912560125 cites W2591883888 @default.
- W2912560125 cites W2729949860 @default.
- W2912560125 cites W2744129621 @default.
- W2912560125 cites W2771732756 @default.
- W2912560125 cites W2775210903 @default.
- W2912560125 cites W2888526648 @default.
- W2912560125 cites W2895517266 @default.
- W2912560125 cites W2899450762 @default.
- W2912560125 cites W2951428751 @default.
- W2912560125 cites W4230274588 @default.
- W2912560125 cites W4294541781 @default.
- W2912560125 doi "https://doi.org/10.1101/532762" @default.
- W2912560125 hasPublicationYear "2019" @default.
- W2912560125 type Work @default.
- W2912560125 sameAs 2912560125 @default.
- W2912560125 citedByCount "0" @default.
- W2912560125 crossrefType "posted-content" @default.
- W2912560125 hasAuthorship W2912560125A5007900033 @default.
- W2912560125 hasAuthorship W2912560125A5024496300 @default.
- W2912560125 hasAuthorship W2912560125A5027704697 @default.
- W2912560125 hasAuthorship W2912560125A5029003935 @default.
- W2912560125 hasAuthorship W2912560125A5037094868 @default.
- W2912560125 hasAuthorship W2912560125A5046109083 @default.
- W2912560125 hasAuthorship W2912560125A5053497181 @default.
- W2912560125 hasAuthorship W2912560125A5072759658 @default.
- W2912560125 hasAuthorship W2912560125A5076752685 @default.
- W2912560125 hasAuthorship W2912560125A5083226872 @default.
- W2912560125 hasAuthorship W2912560125A5083286341 @default.
- W2912560125 hasBestOaLocation W29125601251 @default.
- W2912560125 hasConcept C103697762 @default.
- W2912560125 hasConcept C111919701 @default.
- W2912560125 hasConcept C119857082 @default.
- W2912560125 hasConcept C124101348 @default.
- W2912560125 hasConcept C127413603 @default.
- W2912560125 hasConcept C154945302 @default.
- W2912560125 hasConcept C177264268 @default.
- W2912560125 hasConcept C189430467 @default.
- W2912560125 hasConcept C199360897 @default.
- W2912560125 hasConcept C201797286 @default.
- W2912560125 hasConcept C23123220 @default.
- W2912560125 hasConcept C2777615720 @default.
- W2912560125 hasConcept C41008148 @default.
- W2912560125 hasConcept C51632099 @default.
- W2912560125 hasConcept C539667460 @default.
- W2912560125 hasConcept C58489278 @default.
- W2912560125 hasConcept C60644358 @default.
- W2912560125 hasConcept C74187038 @default.
- W2912560125 hasConcept C86803240 @default.
- W2912560125 hasConcept C98045186 @default.
- W2912560125 hasConceptScore W2912560125C103697762 @default.
- W2912560125 hasConceptScore W2912560125C111919701 @default.
- W2912560125 hasConceptScore W2912560125C119857082 @default.
- W2912560125 hasConceptScore W2912560125C124101348 @default.
- W2912560125 hasConceptScore W2912560125C127413603 @default.
- W2912560125 hasConceptScore W2912560125C154945302 @default.
- W2912560125 hasConceptScore W2912560125C177264268 @default.