Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912582129> ?p ?o ?g. }
- W2912582129 endingPage "214" @default.
- W2912582129 startingPage "204" @default.
- W2912582129 abstract "Neural networks are powerful tools used widely for building cancer prediction models from microarray data. We review the most recently proposed models to highlight the roles of neural networks in predicting cancer from gene expression data. We identified articles published between 2013–2018 in scientific databases using keywords such as cancer classification, cancer analysis, cancer prediction, cancer clustering and microarray data. Analyzing the studies reveals that neural network methods have been either used for filtering (data engineering) the gene expressions in a prior step to prediction; predicting the existence of cancer, cancer type or the survivability risk; or for clustering unlabeled samples. This paper also discusses some practical issues that can be considered when building a neural network-based cancer prediction model. Results indicate that the functionality of the neural network determines its general architecture. However, the decision on the number of hidden layers, neurons, hypermeters and learning algorithm is made using trail-and-error techniques." @default.
- W2912582129 created "2019-02-21" @default.
- W2912582129 creator A5026513481 @default.
- W2912582129 creator A5049469999 @default.
- W2912582129 date "2019-06-01" @default.
- W2912582129 modified "2023-09-29" @default.
- W2912582129 title "A survey of neural network-based cancer prediction models from microarray data" @default.
- W2912582129 cites W1507901999 @default.
- W2912582129 cites W1548779692 @default.
- W2912582129 cites W1967165756 @default.
- W2912582129 cites W1978336444 @default.
- W2912582129 cites W1979377971 @default.
- W2912582129 cites W1987776395 @default.
- W2912582129 cites W1997636678 @default.
- W2912582129 cites W2005895632 @default.
- W2912582129 cites W2011333145 @default.
- W2912582129 cites W2022430992 @default.
- W2912582129 cites W2038082731 @default.
- W2912582129 cites W2042799353 @default.
- W2912582129 cites W2044144232 @default.
- W2912582129 cites W2046079134 @default.
- W2912582129 cites W2066787077 @default.
- W2912582129 cites W2069440689 @default.
- W2912582129 cites W2075746486 @default.
- W2912582129 cites W2079923725 @default.
- W2912582129 cites W2087684630 @default.
- W2912582129 cites W2088851040 @default.
- W2912582129 cites W2097413644 @default.
- W2912582129 cites W2105268089 @default.
- W2912582129 cites W2109363337 @default.
- W2912582129 cites W2110298216 @default.
- W2912582129 cites W2130365699 @default.
- W2912582129 cites W2134389439 @default.
- W2912582129 cites W2136417479 @default.
- W2912582129 cites W2138218344 @default.
- W2912582129 cites W2144354855 @default.
- W2912582129 cites W2149788826 @default.
- W2912582129 cites W2150399480 @default.
- W2912582129 cites W2150690129 @default.
- W2912582129 cites W2158698691 @default.
- W2912582129 cites W2159400887 @default.
- W2912582129 cites W2167101736 @default.
- W2912582129 cites W2170584976 @default.
- W2912582129 cites W2221443338 @default.
- W2912582129 cites W2343420905 @default.
- W2912582129 cites W2411786938 @default.
- W2912582129 cites W2502949459 @default.
- W2912582129 cites W2554616561 @default.
- W2912582129 cites W2561981131 @default.
- W2912582129 cites W2564018391 @default.
- W2912582129 cites W2569219946 @default.
- W2912582129 cites W2589483699 @default.
- W2912582129 cites W2728508604 @default.
- W2912582129 cites W2755012395 @default.
- W2912582129 cites W2768371426 @default.
- W2912582129 cites W2803773316 @default.
- W2912582129 cites W2805508285 @default.
- W2912582129 cites W4245024447 @default.
- W2912582129 cites W4246697467 @default.
- W2912582129 doi "https://doi.org/10.1016/j.artmed.2019.01.006" @default.
- W2912582129 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30797633" @default.
- W2912582129 hasPublicationYear "2019" @default.
- W2912582129 type Work @default.
- W2912582129 sameAs 2912582129 @default.
- W2912582129 citedByCount "73" @default.
- W2912582129 countsByYear W29125821292019 @default.
- W2912582129 countsByYear W29125821292020 @default.
- W2912582129 countsByYear W29125821292021 @default.
- W2912582129 countsByYear W29125821292022 @default.
- W2912582129 countsByYear W29125821292023 @default.
- W2912582129 crossrefType "journal-article" @default.
- W2912582129 hasAuthorship W2912582129A5026513481 @default.
- W2912582129 hasAuthorship W2912582129A5049469999 @default.
- W2912582129 hasBestOaLocation W29125821291 @default.
- W2912582129 hasConcept C104317684 @default.
- W2912582129 hasConcept C119857082 @default.
- W2912582129 hasConcept C121608353 @default.
- W2912582129 hasConcept C124101348 @default.
- W2912582129 hasConcept C150194340 @default.
- W2912582129 hasConcept C154945302 @default.
- W2912582129 hasConcept C41008148 @default.
- W2912582129 hasConcept C50644808 @default.
- W2912582129 hasConcept C54355233 @default.
- W2912582129 hasConcept C55493867 @default.
- W2912582129 hasConcept C73555534 @default.
- W2912582129 hasConcept C8415881 @default.
- W2912582129 hasConcept C86803240 @default.
- W2912582129 hasConceptScore W2912582129C104317684 @default.
- W2912582129 hasConceptScore W2912582129C119857082 @default.
- W2912582129 hasConceptScore W2912582129C121608353 @default.
- W2912582129 hasConceptScore W2912582129C124101348 @default.
- W2912582129 hasConceptScore W2912582129C150194340 @default.
- W2912582129 hasConceptScore W2912582129C154945302 @default.
- W2912582129 hasConceptScore W2912582129C41008148 @default.
- W2912582129 hasConceptScore W2912582129C50644808 @default.
- W2912582129 hasConceptScore W2912582129C54355233 @default.
- W2912582129 hasConceptScore W2912582129C55493867 @default.
- W2912582129 hasConceptScore W2912582129C73555534 @default.