Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912590950> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W2912590950 endingPage "21253" @default.
- W2912590950 startingPage "21246" @default.
- W2912590950 abstract "The latest research of network and computing contributes greatly to the development of vehicular networks. However, in existing works, these two important enabling technologies are studied separately. To reduce the delay, in this paper, we propose a multi-platform intelligent offloading and resource allocation algorithm which can dynamically organize the computing resources to improve the performance of the next-generation vehicular networks. Considering the task calculation problem, the K-nearest neighbor algorithm is used to select the task offloading platform (i.e., cloud computing, mobile edge computing, or local computing). For the computational resource allocation problem and system complexity in non-local computing, reinforcement learning is used to solve the optimization problem of resource allocation. The simulation results show that compared with the baseline algorithm that all tasks are offloaded to the local or mobile edge computing server, the resource allocation scheme achieves a significant reduction in latency cost, and the average system cost can be saved by 80%." @default.
- W2912590950 created "2019-02-21" @default.
- W2912590950 creator A5015476236 @default.
- W2912590950 creator A5031886715 @default.
- W2912590950 creator A5042048777 @default.
- W2912590950 date "2019-01-01" @default.
- W2912590950 modified "2023-10-18" @default.
- W2912590950 title "Resource Allocation Algorithm With Multi-Platform Intelligent Offloading in D2D-Enabled Vehicular Networks" @default.
- W2912590950 cites W2029412946 @default.
- W2912590950 cites W2145339207 @default.
- W2912590950 cites W2195423816 @default.
- W2912590950 cites W2216435223 @default.
- W2912590950 cites W2410038934 @default.
- W2912590950 cites W2511425482 @default.
- W2912590950 cites W2604187483 @default.
- W2912590950 cites W2606281810 @default.
- W2912590950 cites W2620831508 @default.
- W2912590950 cites W2665348200 @default.
- W2912590950 cites W2741692976 @default.
- W2912590950 cites W2751727161 @default.
- W2912590950 cites W2753905570 @default.
- W2912590950 cites W2761862361 @default.
- W2912590950 cites W2767072011 @default.
- W2912590950 cites W2772526503 @default.
- W2912590950 cites W2786686192 @default.
- W2912590950 cites W2802897269 @default.
- W2912590950 cites W2803353561 @default.
- W2912590950 cites W2808381205 @default.
- W2912590950 cites W2889679424 @default.
- W2912590950 doi "https://doi.org/10.1109/access.2018.2882000" @default.
- W2912590950 hasPublicationYear "2019" @default.
- W2912590950 type Work @default.
- W2912590950 sameAs 2912590950 @default.
- W2912590950 citedByCount "37" @default.
- W2912590950 countsByYear W29125909502019 @default.
- W2912590950 countsByYear W29125909502020 @default.
- W2912590950 countsByYear W29125909502021 @default.
- W2912590950 countsByYear W29125909502022 @default.
- W2912590950 countsByYear W29125909502023 @default.
- W2912590950 crossrefType "journal-article" @default.
- W2912590950 hasAuthorship W2912590950A5015476236 @default.
- W2912590950 hasAuthorship W2912590950A5031886715 @default.
- W2912590950 hasAuthorship W2912590950A5042048777 @default.
- W2912590950 hasBestOaLocation W29125909501 @default.
- W2912590950 hasConcept C111919701 @default.
- W2912590950 hasConcept C11413529 @default.
- W2912590950 hasConcept C120314980 @default.
- W2912590950 hasConcept C2776061582 @default.
- W2912590950 hasConcept C2778456923 @default.
- W2912590950 hasConcept C2780609101 @default.
- W2912590950 hasConcept C29202148 @default.
- W2912590950 hasConcept C31258907 @default.
- W2912590950 hasConcept C41008148 @default.
- W2912590950 hasConcept C76155785 @default.
- W2912590950 hasConcept C79974875 @default.
- W2912590950 hasConcept C82876162 @default.
- W2912590950 hasConcept C93996380 @default.
- W2912590950 hasConceptScore W2912590950C111919701 @default.
- W2912590950 hasConceptScore W2912590950C11413529 @default.
- W2912590950 hasConceptScore W2912590950C120314980 @default.
- W2912590950 hasConceptScore W2912590950C2776061582 @default.
- W2912590950 hasConceptScore W2912590950C2778456923 @default.
- W2912590950 hasConceptScore W2912590950C2780609101 @default.
- W2912590950 hasConceptScore W2912590950C29202148 @default.
- W2912590950 hasConceptScore W2912590950C31258907 @default.
- W2912590950 hasConceptScore W2912590950C41008148 @default.
- W2912590950 hasConceptScore W2912590950C76155785 @default.
- W2912590950 hasConceptScore W2912590950C79974875 @default.
- W2912590950 hasConceptScore W2912590950C82876162 @default.
- W2912590950 hasConceptScore W2912590950C93996380 @default.
- W2912590950 hasFunder F4320321001 @default.
- W2912590950 hasLocation W29125909501 @default.
- W2912590950 hasOpenAccess W2912590950 @default.
- W2912590950 hasPrimaryLocation W29125909501 @default.
- W2912590950 hasRelatedWork W1749786217 @default.
- W2912590950 hasRelatedWork W2911809097 @default.
- W2912590950 hasRelatedWork W3009325463 @default.
- W2912590950 hasRelatedWork W3112631746 @default.
- W2912590950 hasRelatedWork W3174690704 @default.
- W2912590950 hasRelatedWork W3186739297 @default.
- W2912590950 hasRelatedWork W3200447006 @default.
- W2912590950 hasRelatedWork W4315629857 @default.
- W2912590950 hasRelatedWork W4360996853 @default.
- W2912590950 hasRelatedWork W4379116408 @default.
- W2912590950 hasVolume "7" @default.
- W2912590950 isParatext "false" @default.
- W2912590950 isRetracted "false" @default.
- W2912590950 magId "2912590950" @default.
- W2912590950 workType "article" @default.