Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912591575> ?p ?o ?g. }
- W2912591575 endingPage "69" @default.
- W2912591575 startingPage "58" @default.
- W2912591575 abstract "When analyzing high-dimensional near-infrared (NIR) spectral datasets, variable selection is critical to improving models' predictive abilities. However, some methods have many limitations, such as a high risk of overfitting, time-intensiveness, or large computation demands, when dealing with a high number of variables. In this study, we propose a hybrid variable selection strategy based on the continuous shrinkage of variable space which is the core idea of variable combination population analysis (VCPA). The VCPA-based hybrid strategy continuously shrinks the variable space from big to small and optimizes it based on modified VCPA in the first step. It then employs iteratively retaining informative variables (IRIV) and a genetic algorithm (GA) to carry out further optimization in the second step. It takes full advantage of VCPA, GA, and IRIV, and makes up for their drawbacks in the face of high numbers of variables. Three NIR datasets and three variable selection methods including two widely-used methods (competitive adaptive reweighted sampling, CARS and genetic algorithm-interval partial least squares, GA–iPLS) and one hybrid method (variable importance in projection coupled with genetic algorithm, VIP–GA) were used to investigate the improvement of VCPA-based hybrid strategy. The results show that VCPA–GA and VCPA–IRIV significantly improve model's prediction performance when compared with other methods, indicating that the modified VCPA step is a very efficient way to filter the uninformative variables and VCPA-based hybrid strategy is a good and promising strategy for variable selection in NIR. The MATLAB source codes of VCPA–GA and VCPA–IRIV can be freely downloaded in the website: https://cn.mathworks.com/matlabcentral/profile/authors/5526470-yonghuan-yun." @default.
- W2912591575 created "2019-02-21" @default.
- W2912591575 creator A5045647383 @default.
- W2912591575 creator A5057587594 @default.
- W2912591575 creator A5063220027 @default.
- W2912591575 creator A5080576150 @default.
- W2912591575 creator A5083809384 @default.
- W2912591575 creator A5087601593 @default.
- W2912591575 creator A5091677485 @default.
- W2912591575 date "2019-06-01" @default.
- W2912591575 modified "2023-10-06" @default.
- W2912591575 title "A hybrid variable selection strategy based on continuous shrinkage of variable space in multivariate calibration" @default.
- W2912591575 cites W1724112888 @default.
- W2912591575 cites W1867873931 @default.
- W2912591575 cites W1899608193 @default.
- W2912591575 cites W1932775525 @default.
- W2912591575 cites W1963763787 @default.
- W2912591575 cites W1970542683 @default.
- W2912591575 cites W1971529025 @default.
- W2912591575 cites W1975579380 @default.
- W2912591575 cites W1982755765 @default.
- W2912591575 cites W1984312424 @default.
- W2912591575 cites W1988619277 @default.
- W2912591575 cites W1996195892 @default.
- W2912591575 cites W1997270149 @default.
- W2912591575 cites W2007808016 @default.
- W2912591575 cites W2017422910 @default.
- W2912591575 cites W2018338598 @default.
- W2912591575 cites W2022516935 @default.
- W2912591575 cites W2036804696 @default.
- W2912591575 cites W2042672252 @default.
- W2912591575 cites W2043689097 @default.
- W2912591575 cites W2048260397 @default.
- W2912591575 cites W2052600159 @default.
- W2912591575 cites W2054403851 @default.
- W2912591575 cites W2054625992 @default.
- W2912591575 cites W2056073190 @default.
- W2912591575 cites W2073503722 @default.
- W2912591575 cites W2078395305 @default.
- W2912591575 cites W2084649778 @default.
- W2912591575 cites W2088857433 @default.
- W2912591575 cites W2089137303 @default.
- W2912591575 cites W2094094863 @default.
- W2912591575 cites W2102247676 @default.
- W2912591575 cites W2118026371 @default.
- W2912591575 cites W2136333245 @default.
- W2912591575 cites W2158863190 @default.
- W2912591575 cites W2170796849 @default.
- W2912591575 cites W2231144898 @default.
- W2912591575 cites W2280175079 @default.
- W2912591575 cites W2552946668 @default.
- W2912591575 cites W4253914379 @default.
- W2912591575 doi "https://doi.org/10.1016/j.aca.2019.01.022" @default.
- W2912591575 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30851854" @default.
- W2912591575 hasPublicationYear "2019" @default.
- W2912591575 type Work @default.
- W2912591575 sameAs 2912591575 @default.
- W2912591575 citedByCount "85" @default.
- W2912591575 countsByYear W29125915752019 @default.
- W2912591575 countsByYear W29125915752020 @default.
- W2912591575 countsByYear W29125915752021 @default.
- W2912591575 countsByYear W29125915752022 @default.
- W2912591575 countsByYear W29125915752023 @default.
- W2912591575 crossrefType "journal-article" @default.
- W2912591575 hasAuthorship W2912591575A5045647383 @default.
- W2912591575 hasAuthorship W2912591575A5057587594 @default.
- W2912591575 hasAuthorship W2912591575A5063220027 @default.
- W2912591575 hasAuthorship W2912591575A5080576150 @default.
- W2912591575 hasAuthorship W2912591575A5083809384 @default.
- W2912591575 hasAuthorship W2912591575A5087601593 @default.
- W2912591575 hasAuthorship W2912591575A5091677485 @default.
- W2912591575 hasConcept C11413529 @default.
- W2912591575 hasConcept C126255220 @default.
- W2912591575 hasConcept C134306372 @default.
- W2912591575 hasConcept C144024400 @default.
- W2912591575 hasConcept C148483581 @default.
- W2912591575 hasConcept C149923435 @default.
- W2912591575 hasConcept C154945302 @default.
- W2912591575 hasConcept C182365436 @default.
- W2912591575 hasConcept C22019652 @default.
- W2912591575 hasConcept C2908647359 @default.
- W2912591575 hasConcept C33923547 @default.
- W2912591575 hasConcept C41008148 @default.
- W2912591575 hasConcept C50644808 @default.
- W2912591575 hasConcept C57493831 @default.
- W2912591575 hasConcept C81917197 @default.
- W2912591575 hasConcept C8880873 @default.
- W2912591575 hasConceptScore W2912591575C11413529 @default.
- W2912591575 hasConceptScore W2912591575C126255220 @default.
- W2912591575 hasConceptScore W2912591575C134306372 @default.
- W2912591575 hasConceptScore W2912591575C144024400 @default.
- W2912591575 hasConceptScore W2912591575C148483581 @default.
- W2912591575 hasConceptScore W2912591575C149923435 @default.
- W2912591575 hasConceptScore W2912591575C154945302 @default.
- W2912591575 hasConceptScore W2912591575C182365436 @default.
- W2912591575 hasConceptScore W2912591575C22019652 @default.
- W2912591575 hasConceptScore W2912591575C2908647359 @default.
- W2912591575 hasConceptScore W2912591575C33923547 @default.