Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912594761> ?p ?o ?g. }
- W2912594761 abstract "In preference learning, it is beneficial to incorporate monotonicity constraints for learning utility functions when there is prior knowledge of monotonicity. We present a novel method for learning utility functions with monotonicity constraints using Gaussian process regression. Data is provided in the form of pairwise comparisons between items. Using conditions on monotonicity for the predictive function, an algorithm is proposed which uses the weighted average between prior linear and maximum a posteriori (MAP) utility estimates. This algorithm is formally shown to guarantee monotonicity of the learned utility function in the dimensions desired. The algorithm is tested in a Monte Carlo simulation case study, in which the results suggest that the learned utility by the proposed algorithm performs better in prediction than the standalone linear estimate, and enforces monotonicity unlike the MAP estimate." @default.
- W2912594761 created "2019-02-21" @default.
- W2912594761 creator A5005424267 @default.
- W2912594761 creator A5010259253 @default.
- W2912594761 creator A5015120147 @default.
- W2912594761 creator A5020178903 @default.
- W2912594761 creator A5035230630 @default.
- W2912594761 date "2018-12-01" @default.
- W2912594761 modified "2023-09-27" @default.
- W2912594761 title "Gaussian Processes with Monotonicity Constraints for Preference Learning from Pairwise Comparisons" @default.
- W2912594761 cites W1550812296 @default.
- W2912594761 cites W1667312704 @default.
- W2912594761 cites W1965520710 @default.
- W2912594761 cites W1971150510 @default.
- W2912594761 cites W2033442452 @default.
- W2912594761 cites W2089163864 @default.
- W2912594761 cites W2102705755 @default.
- W2912594761 cites W2137869981 @default.
- W2912594761 cites W2144846366 @default.
- W2912594761 cites W2145897424 @default.
- W2912594761 cites W2158995533 @default.
- W2912594761 cites W2161735965 @default.
- W2912594761 cites W2163371195 @default.
- W2912594761 cites W2407591215 @default.
- W2912594761 cites W2580464820 @default.
- W2912594761 cites W2785324569 @default.
- W2912594761 cites W2908355421 @default.
- W2912594761 cites W3122059187 @default.
- W2912594761 doi "https://doi.org/10.1109/cdc.2018.8618894" @default.
- W2912594761 hasPublicationYear "2018" @default.
- W2912594761 type Work @default.
- W2912594761 sameAs 2912594761 @default.
- W2912594761 citedByCount "0" @default.
- W2912594761 crossrefType "proceedings-article" @default.
- W2912594761 hasAuthorship W2912594761A5005424267 @default.
- W2912594761 hasAuthorship W2912594761A5010259253 @default.
- W2912594761 hasAuthorship W2912594761A5015120147 @default.
- W2912594761 hasAuthorship W2912594761A5020178903 @default.
- W2912594761 hasAuthorship W2912594761A5035230630 @default.
- W2912594761 hasConcept C105795698 @default.
- W2912594761 hasConcept C111472728 @default.
- W2912594761 hasConcept C11413529 @default.
- W2912594761 hasConcept C119857082 @default.
- W2912594761 hasConcept C121332964 @default.
- W2912594761 hasConcept C126255220 @default.
- W2912594761 hasConcept C134306372 @default.
- W2912594761 hasConcept C138885662 @default.
- W2912594761 hasConcept C14036430 @default.
- W2912594761 hasConcept C154945302 @default.
- W2912594761 hasConcept C163716315 @default.
- W2912594761 hasConcept C184898388 @default.
- W2912594761 hasConcept C2781249084 @default.
- W2912594761 hasConcept C33923547 @default.
- W2912594761 hasConcept C41008148 @default.
- W2912594761 hasConcept C49781872 @default.
- W2912594761 hasConcept C61326573 @default.
- W2912594761 hasConcept C62520636 @default.
- W2912594761 hasConcept C72169020 @default.
- W2912594761 hasConcept C75553542 @default.
- W2912594761 hasConcept C78458016 @default.
- W2912594761 hasConcept C86803240 @default.
- W2912594761 hasConcept C9810830 @default.
- W2912594761 hasConceptScore W2912594761C105795698 @default.
- W2912594761 hasConceptScore W2912594761C111472728 @default.
- W2912594761 hasConceptScore W2912594761C11413529 @default.
- W2912594761 hasConceptScore W2912594761C119857082 @default.
- W2912594761 hasConceptScore W2912594761C121332964 @default.
- W2912594761 hasConceptScore W2912594761C126255220 @default.
- W2912594761 hasConceptScore W2912594761C134306372 @default.
- W2912594761 hasConceptScore W2912594761C138885662 @default.
- W2912594761 hasConceptScore W2912594761C14036430 @default.
- W2912594761 hasConceptScore W2912594761C154945302 @default.
- W2912594761 hasConceptScore W2912594761C163716315 @default.
- W2912594761 hasConceptScore W2912594761C184898388 @default.
- W2912594761 hasConceptScore W2912594761C2781249084 @default.
- W2912594761 hasConceptScore W2912594761C33923547 @default.
- W2912594761 hasConceptScore W2912594761C41008148 @default.
- W2912594761 hasConceptScore W2912594761C49781872 @default.
- W2912594761 hasConceptScore W2912594761C61326573 @default.
- W2912594761 hasConceptScore W2912594761C62520636 @default.
- W2912594761 hasConceptScore W2912594761C72169020 @default.
- W2912594761 hasConceptScore W2912594761C75553542 @default.
- W2912594761 hasConceptScore W2912594761C78458016 @default.
- W2912594761 hasConceptScore W2912594761C86803240 @default.
- W2912594761 hasConceptScore W2912594761C9810830 @default.
- W2912594761 hasLocation W29125947611 @default.
- W2912594761 hasOpenAccess W2912594761 @default.
- W2912594761 hasPrimaryLocation W29125947611 @default.
- W2912594761 hasRelatedWork W2010812986 @default.
- W2912594761 hasRelatedWork W2105532481 @default.
- W2912594761 hasRelatedWork W2112213010 @default.
- W2912594761 hasRelatedWork W2150652378 @default.
- W2912594761 hasRelatedWork W2154697841 @default.
- W2912594761 hasRelatedWork W240372843 @default.
- W2912594761 hasRelatedWork W2912594761 @default.
- W2912594761 hasRelatedWork W2950625797 @default.
- W2912594761 hasRelatedWork W3006173783 @default.
- W2912594761 hasRelatedWork W3017888931 @default.
- W2912594761 isParatext "false" @default.
- W2912594761 isRetracted "false" @default.