Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912629470> ?p ?o ?g. }
- W2912629470 endingPage "532" @default.
- W2912629470 startingPage "518" @default.
- W2912629470 abstract "Risk-based inspection (RBI) screening assessment is used to identify equipment that makes a significant contribution to the system's total risk of failure (RoF), so that the RBI detailed assessment can focus on analyzing higher-risk equipment. Due to its qualitative nature and high dependency on sound engineering judgment, screening assessment is vulnerable to human biases and errors, and thus subject to output variability and threatens the integrity of the assets. This paper attempts to tackle these challenges by utilizing a machine learning approach to conduct screening assessment. A case study using a dataset of RBI assessment for oil and gas production and processing units is provided, to illustrate the development of an intelligent system, based on a machine learning model for performing RBI screening assessment. The best performing model achieves accuracy and precision of 92.33% and 84.58%, respectively. A comparative analysis between the performance of the intelligent system and the conventional assessment is performed to examine the benefits of applying the machine learning approach in the RBI screening assessment. The result shows that the application of the machine learning approach potentially improves the quality of the conventional RBI screening assessment output by reducing output variability and increasing accuracy and precision." @default.
- W2912629470 created "2019-02-21" @default.
- W2912629470 creator A5036783764 @default.
- W2912629470 creator A5037071319 @default.
- W2912629470 date "2019-05-01" @default.
- W2912629470 modified "2023-10-06" @default.
- W2912629470 title "Machine learning approach for risk-based inspection screening assessment" @default.
- W2912629470 cites W1678356000 @default.
- W2912629470 cites W1761022139 @default.
- W2912629470 cites W1877099509 @default.
- W2912629470 cites W1965602889 @default.
- W2912629470 cites W1969624577 @default.
- W2912629470 cites W1970559658 @default.
- W2912629470 cites W1973995342 @default.
- W2912629470 cites W1990838868 @default.
- W2912629470 cites W1999864972 @default.
- W2912629470 cites W2000610329 @default.
- W2912629470 cites W2003813760 @default.
- W2912629470 cites W2012533078 @default.
- W2912629470 cites W2016979930 @default.
- W2912629470 cites W2017337590 @default.
- W2912629470 cites W2022288139 @default.
- W2912629470 cites W2032170121 @default.
- W2912629470 cites W2042385018 @default.
- W2912629470 cites W2044312401 @default.
- W2912629470 cites W2045548665 @default.
- W2912629470 cites W2050028606 @default.
- W2912629470 cites W2050202310 @default.
- W2912629470 cites W2052611008 @default.
- W2912629470 cites W2053885255 @default.
- W2912629470 cites W2054307729 @default.
- W2912629470 cites W2055736694 @default.
- W2912629470 cites W2056694365 @default.
- W2912629470 cites W2059640878 @default.
- W2912629470 cites W2062302861 @default.
- W2912629470 cites W2067144983 @default.
- W2912629470 cites W2073674960 @default.
- W2912629470 cites W2074866945 @default.
- W2912629470 cites W2077108729 @default.
- W2912629470 cites W2082813744 @default.
- W2912629470 cites W2094023061 @default.
- W2912629470 cites W2096352448 @default.
- W2912629470 cites W2107273184 @default.
- W2912629470 cites W2108728387 @default.
- W2912629470 cites W2112865076 @default.
- W2912629470 cites W2119387367 @default.
- W2912629470 cites W2122111042 @default.
- W2912629470 cites W2129585530 @default.
- W2912629470 cites W2132424470 @default.
- W2912629470 cites W2135695572 @default.
- W2912629470 cites W2141007997 @default.
- W2912629470 cites W2155632266 @default.
- W2912629470 cites W2158698691 @default.
- W2912629470 cites W2166963235 @default.
- W2912629470 cites W226699106 @default.
- W2912629470 cites W2277027641 @default.
- W2912629470 cites W232877332 @default.
- W2912629470 cites W2370924594 @default.
- W2912629470 cites W2461315544 @default.
- W2912629470 cites W2555459216 @default.
- W2912629470 cites W2604504584 @default.
- W2912629470 cites W2610135452 @default.
- W2912629470 cites W2889273262 @default.
- W2912629470 cites W2911964244 @default.
- W2912629470 cites W4233866695 @default.
- W2912629470 cites W4236401033 @default.
- W2912629470 cites W4239510810 @default.
- W2912629470 cites W4243410154 @default.
- W2912629470 doi "https://doi.org/10.1016/j.ress.2019.02.008" @default.
- W2912629470 hasPublicationYear "2019" @default.
- W2912629470 type Work @default.
- W2912629470 sameAs 2912629470 @default.
- W2912629470 citedByCount "56" @default.
- W2912629470 countsByYear W29126294702019 @default.
- W2912629470 countsByYear W29126294702020 @default.
- W2912629470 countsByYear W29126294702021 @default.
- W2912629470 countsByYear W29126294702022 @default.
- W2912629470 countsByYear W29126294702023 @default.
- W2912629470 crossrefType "journal-article" @default.
- W2912629470 hasAuthorship W2912629470A5036783764 @default.
- W2912629470 hasAuthorship W2912629470A5037071319 @default.
- W2912629470 hasConcept C111472728 @default.
- W2912629470 hasConcept C112930515 @default.
- W2912629470 hasConcept C119857082 @default.
- W2912629470 hasConcept C12174686 @default.
- W2912629470 hasConcept C127413603 @default.
- W2912629470 hasConcept C138885662 @default.
- W2912629470 hasConcept C154945302 @default.
- W2912629470 hasConcept C19768560 @default.
- W2912629470 hasConcept C200601418 @default.
- W2912629470 hasConcept C2779530757 @default.
- W2912629470 hasConcept C3018395757 @default.
- W2912629470 hasConcept C3020001037 @default.
- W2912629470 hasConcept C38652104 @default.
- W2912629470 hasConcept C41008148 @default.
- W2912629470 hasConcept C71924100 @default.
- W2912629470 hasConceptScore W2912629470C111472728 @default.
- W2912629470 hasConceptScore W2912629470C112930515 @default.