Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912631182> ?p ?o ?g. }
- W2912631182 endingPage "718" @default.
- W2912631182 startingPage "683" @default.
- W2912631182 abstract "Solar evaporation is an attractive technology that combines the two most abundant resources on Earth: solar energy and water. It has enabled an array of emerging applications, including contaminated water purification, sea water desalination, electric generation, steam sterilization, and fuel production. Nonetheless, traditional solar evaporation approaches generally heat the entire amount of water in the system reservoir, leading to a low thermal efficiency of just ∼40%. The recent development of interfacial solar evaporation has enabled just the air-liquid interface to be heated rather than the bulk water, resulting in a much higher thermal efficiency of up to ∼90% at reduced solar concentration, mainly enabled by the rapid development of new photothermal materials and photothermal structural engineering. In this review, we highlight recent advances in solar evaporation materials, structures, and systems. We discuss different photothermal materials along with their photothermal mechanisms, as well as various substrates featuring different water transport and/or thermal insulation functions, aiming to provide guidance for future material choices. Diverse material and structural engineering strategies toward better solar evaporation performance are systematically reviewed, as well as their emerging applications in various fields of water and energy conversion. Finally, we propose insights into current challenges and future perspectives of solar evaporation. Solar evaporation is an ancient technology that has regained tremendous attention because of the abundance of solar energy, widely available water sources, and facile facilities in combination with substantial improvements of conversion efficiency enabled by improved photothermal materials, thermal management, and interfacial heating system designs in recent years. In this review, we discuss recent developments in photothermal materials, with a focus on their photothermal conversion mechanisms as light absorbers. We also explore the diverse structural design and engineering strategies that are being used to improve evaporation performance, including the design principles for high-efficiency light-to-heat conversion, optimization of thermal management, water transport, interface wettability, and anti-salt-blocking structures. We describe the potential applications of this attractive technology in a variety of energy and environmental fields. The current challenges and future research opportunities are also discussed, providing a roadmap for the future development of solar evaporation technology. Solar evaporation is an ancient technology that has regained tremendous attention because of the abundance of solar energy, widely available water sources, and facile facilities in combination with substantial improvements of conversion efficiency enabled by improved photothermal materials, thermal management, and interfacial heating system designs in recent years. In this review, we discuss recent developments in photothermal materials, with a focus on their photothermal conversion mechanisms as light absorbers. We also explore the diverse structural design and engineering strategies that are being used to improve evaporation performance, including the design principles for high-efficiency light-to-heat conversion, optimization of thermal management, water transport, interface wettability, and anti-salt-blocking structures. We describe the potential applications of this attractive technology in a variety of energy and environmental fields. The current challenges and future research opportunities are also discussed, providing a roadmap for the future development of solar evaporation technology." @default.
- W2912631182 created "2019-02-21" @default.
- W2912631182 creator A5002926420 @default.
- W2912631182 creator A5040400328 @default.
- W2912631182 creator A5079100287 @default.
- W2912631182 date "2019-03-01" @default.
- W2912631182 modified "2023-10-18" @default.
- W2912631182 title "Challenges and Opportunities for Solar Evaporation" @default.
- W2912631182 cites W1023914651 @default.
- W2912631182 cites W1275439401 @default.
- W2912631182 cites W1919015928 @default.
- W2912631182 cites W1963495194 @default.
- W2912631182 cites W1983254992 @default.
- W2912631182 cites W1993208408 @default.
- W2912631182 cites W1995057502 @default.
- W2912631182 cites W1995734581 @default.
- W2912631182 cites W2005647405 @default.
- W2912631182 cites W2016915800 @default.
- W2912631182 cites W2018557830 @default.
- W2912631182 cites W2028437902 @default.
- W2912631182 cites W2032741311 @default.
- W2912631182 cites W2033781967 @default.
- W2912631182 cites W2050110494 @default.
- W2912631182 cites W2053078375 @default.
- W2912631182 cites W2053398942 @default.
- W2912631182 cites W2055638681 @default.
- W2912631182 cites W2058532512 @default.
- W2912631182 cites W2067212611 @default.
- W2912631182 cites W2068947337 @default.
- W2912631182 cites W2080075489 @default.
- W2912631182 cites W2081540160 @default.
- W2912631182 cites W2084279813 @default.
- W2912631182 cites W2084629494 @default.
- W2912631182 cites W2088525842 @default.
- W2912631182 cites W2093833846 @default.
- W2912631182 cites W2115779567 @default.
- W2912631182 cites W2119767565 @default.
- W2912631182 cites W2124695091 @default.
- W2912631182 cites W2130566039 @default.
- W2912631182 cites W2132315869 @default.
- W2912631182 cites W2133331142 @default.
- W2912631182 cites W2134387483 @default.
- W2912631182 cites W2166186402 @default.
- W2912631182 cites W2254097732 @default.
- W2912631182 cites W2257992222 @default.
- W2912631182 cites W2262600837 @default.
- W2912631182 cites W2272203095 @default.
- W2912631182 cites W2274297694 @default.
- W2912631182 cites W2290143455 @default.
- W2912631182 cites W2314966009 @default.
- W2912631182 cites W2328579316 @default.
- W2912631182 cites W2342920019 @default.
- W2912631182 cites W2410875358 @default.
- W2912631182 cites W2417704043 @default.
- W2912631182 cites W2422872162 @default.
- W2912631182 cites W2423110101 @default.
- W2912631182 cites W246823607 @default.
- W2912631182 cites W2480407988 @default.
- W2912631182 cites W2494544153 @default.
- W2912631182 cites W2509137708 @default.
- W2912631182 cites W2513448888 @default.
- W2912631182 cites W2516987864 @default.
- W2912631182 cites W2518547022 @default.
- W2912631182 cites W2540990988 @default.
- W2912631182 cites W2543119225 @default.
- W2912631182 cites W2544056732 @default.
- W2912631182 cites W2548010115 @default.
- W2912631182 cites W2549447336 @default.
- W2912631182 cites W2553330126 @default.
- W2912631182 cites W2553355974 @default.
- W2912631182 cites W2553837824 @default.
- W2912631182 cites W2556867215 @default.
- W2912631182 cites W2563694259 @default.
- W2912631182 cites W2564594433 @default.
- W2912631182 cites W2567241828 @default.
- W2912631182 cites W2571309095 @default.
- W2912631182 cites W2581150991 @default.
- W2912631182 cites W2581348344 @default.
- W2912631182 cites W2584866830 @default.
- W2912631182 cites W2597531427 @default.
- W2912631182 cites W2601154880 @default.
- W2912631182 cites W2604350933 @default.
- W2912631182 cites W2605487562 @default.
- W2912631182 cites W2605627140 @default.
- W2912631182 cites W2606497133 @default.
- W2912631182 cites W2610879647 @default.
- W2912631182 cites W2611941517 @default.
- W2912631182 cites W2614636112 @default.
- W2912631182 cites W2614809333 @default.
- W2912631182 cites W2616022113 @default.
- W2912631182 cites W2616180924 @default.
- W2912631182 cites W2617536128 @default.
- W2912631182 cites W2622037360 @default.
- W2912631182 cites W2626318253 @default.
- W2912631182 cites W2672465109 @default.
- W2912631182 cites W2699424525 @default.
- W2912631182 cites W2725349811 @default.
- W2912631182 cites W2743381307 @default.