Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912632837> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W2912632837 abstract "The surface of the landslide in the Three Gorges Reservoir area has a step-like feature. Landslide displacement prediction method based on displacement response component model is one of the main methods for the prediction of landslide displacement. In order to solve problem about displacement prediction of Landslide fluctuation term in reservoirs, the reorganization and optimization of the main priming factors have not been considered yet. And a method for predicting landslide displacement HP-CEEMDAN-GA-ELM based on the reorganization and optimization of time-series CEEMDAN inducing factors has been proposed. Taking the surface displacement data of Baishuihe landslide from January 2008 to December 2012 as an example, the surface displacement time series is decomposed into the trend term displacement and the fluctuation term displacement by using HP filter. This trend item is predicted by GA-ELM. It decomposes predisposing factors through CEEMDAN, and uses gray correlation analysis to determine the optimal recombination factors for inducing factors. Based on Inducer component of reorganization, a GA-ELM model is established to predict the fluctuation term. Compared with multiple prediction models, the experimental results show that the prediction error of the model is small, which further prove the validity of the method." @default.
- W2912632837 created "2019-02-21" @default.
- W2912632837 creator A5001022674 @default.
- W2912632837 creator A5004239927 @default.
- W2912632837 creator A5029241481 @default.
- W2912632837 creator A5045514825 @default.
- W2912632837 creator A5047218708 @default.
- W2912632837 creator A5067265615 @default.
- W2912632837 creator A5088375164 @default.
- W2912632837 date "2018-11-01" @default.
- W2912632837 modified "2023-09-26" @default.
- W2912632837 title "Displacement Prediction of Landslide Based on GA-ELM and Optimization of Inducing Factors" @default.
- W2912632837 cites W1496317909 @default.
- W2912632837 cites W1988845048 @default.
- W2912632837 cites W2088563154 @default.
- W2912632837 cites W2096987757 @default.
- W2912632837 cites W2125056386 @default.
- W2912632837 cites W2355047195 @default.
- W2912632837 cites W2366145127 @default.
- W2912632837 cites W2372009453 @default.
- W2912632837 cites W2753466075 @default.
- W2912632837 cites W585358051 @default.
- W2912632837 doi "https://doi.org/10.1109/icdh.2018.00039" @default.
- W2912632837 hasPublicationYear "2018" @default.
- W2912632837 type Work @default.
- W2912632837 sameAs 2912632837 @default.
- W2912632837 citedByCount "0" @default.
- W2912632837 crossrefType "proceedings-article" @default.
- W2912632837 hasAuthorship W2912632837A5001022674 @default.
- W2912632837 hasAuthorship W2912632837A5004239927 @default.
- W2912632837 hasAuthorship W2912632837A5029241481 @default.
- W2912632837 hasAuthorship W2912632837A5045514825 @default.
- W2912632837 hasAuthorship W2912632837A5047218708 @default.
- W2912632837 hasAuthorship W2912632837A5067265615 @default.
- W2912632837 hasAuthorship W2912632837A5088375164 @default.
- W2912632837 hasConcept C107551265 @default.
- W2912632837 hasConcept C127313418 @default.
- W2912632837 hasConcept C15744967 @default.
- W2912632837 hasConcept C186295008 @default.
- W2912632837 hasConcept C187320778 @default.
- W2912632837 hasConcept C542102704 @default.
- W2912632837 hasConceptScore W2912632837C107551265 @default.
- W2912632837 hasConceptScore W2912632837C127313418 @default.
- W2912632837 hasConceptScore W2912632837C15744967 @default.
- W2912632837 hasConceptScore W2912632837C186295008 @default.
- W2912632837 hasConceptScore W2912632837C187320778 @default.
- W2912632837 hasConceptScore W2912632837C542102704 @default.
- W2912632837 hasLocation W29126328371 @default.
- W2912632837 hasOpenAccess W2912632837 @default.
- W2912632837 hasPrimaryLocation W29126328371 @default.
- W2912632837 hasRelatedWork W147727069 @default.
- W2912632837 hasRelatedWork W2031841681 @default.
- W2912632837 hasRelatedWork W2037072271 @default.
- W2912632837 hasRelatedWork W2075102816 @default.
- W2912632837 hasRelatedWork W2348323026 @default.
- W2912632837 hasRelatedWork W2753466075 @default.
- W2912632837 hasRelatedWork W2805826728 @default.
- W2912632837 hasRelatedWork W2910183581 @default.
- W2912632837 hasRelatedWork W2913606272 @default.
- W2912632837 hasRelatedWork W3013874315 @default.
- W2912632837 hasRelatedWork W3019096483 @default.
- W2912632837 hasRelatedWork W3037828410 @default.
- W2912632837 hasRelatedWork W3097346376 @default.
- W2912632837 hasRelatedWork W3169825627 @default.
- W2912632837 hasRelatedWork W3184136578 @default.
- W2912632837 hasRelatedWork W3196811546 @default.
- W2912632837 hasRelatedWork W3214300959 @default.
- W2912632837 hasRelatedWork W2985689575 @default.
- W2912632837 hasRelatedWork W3017708065 @default.
- W2912632837 hasRelatedWork W3139132819 @default.
- W2912632837 isParatext "false" @default.
- W2912632837 isRetracted "false" @default.
- W2912632837 magId "2912632837" @default.
- W2912632837 workType "article" @default.