Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912633045> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W2912633045 abstract "Deep learning based techniques have shown to be beneficial for automating various medical image tasks like segmentation of lesions and automation of disease diagnosis. In this work, we demonstrate the utility of deep learning and radiomics features for classification of low grade gliomas (LGG) into astrocytoma and oligodendroglioma. In this study the objective is to use whole-slide H&E stained images and Magnetic Resonance (MR) images of the brain to make a prediction about the class of the glioma. We treat both the pathology and radiology datasets separately for in-depth analysis and then combine the predictions made by the individual models to get the final class label for a patient. The pre-processing of the whole slide images involved region of interest detection, stain normalization and patch extraction. An autoencoder was trained to extract features from each patch and these features are then used to find anomaly patches among the entire set of patches for a single Whole Slide Image. These anomaly patches from all the training slides form the dataset for training the classification model. A deep neural network based classification model was used to classify individual patches among the two classes. For the radiology dataset based analysis, each MRI scan was fed into a pre-processing pipeline which involved skull-stripping, co-registration of MR sequences to T1c, re-sampling of MR volumes to isotropic voxels and segmentation of brain lesion. The lesions in the MR volumes were automatically segmented using a fully convolutional Neural Network (CNN) trained on BraTS-2018 segmentation challenge dataset. From the segmentation maps 64(,times ,)64(,times ,)64 cube patches centered around the tumor were extracted from the T1 MR images for extraction of high level radiomic features. These features were then used to train a logistic regression classifier. After developing the two models, we used a confidence based prediction methodology to get the final class labels for each patient. This combined approach achieved a classification accuracy of 90% on the challenge test set (n = 20). These results showcase the emerging role of deep learning and radiomics in analyzing whole-slide images and MR scans for lesion characterization." @default.
- W2912633045 created "2019-02-21" @default.
- W2912633045 creator A5034120908 @default.
- W2912633045 creator A5040749287 @default.
- W2912633045 creator A5048838919 @default.
- W2912633045 creator A5066090465 @default.
- W2912633045 creator A5071979034 @default.
- W2912633045 date "2019-01-01" @default.
- W2912633045 modified "2023-10-18" @default.
- W2912633045 title "A Combined Radio-Histological Approach for Classification of Low Grade Gliomas" @default.
- W2912633045 cites W1641498739 @default.
- W2912633045 cites W2129112648 @default.
- W2912633045 cites W2296719434 @default.
- W2912633045 cites W2301358467 @default.
- W2912633045 cites W2767128594 @default.
- W2912633045 cites W2963446712 @default.
- W2912633045 doi "https://doi.org/10.1007/978-3-030-11723-8_42" @default.
- W2912633045 hasPublicationYear "2019" @default.
- W2912633045 type Work @default.
- W2912633045 sameAs 2912633045 @default.
- W2912633045 citedByCount "5" @default.
- W2912633045 countsByYear W29126330452020 @default.
- W2912633045 countsByYear W29126330452021 @default.
- W2912633045 crossrefType "book-chapter" @default.
- W2912633045 hasAuthorship W2912633045A5034120908 @default.
- W2912633045 hasAuthorship W2912633045A5040749287 @default.
- W2912633045 hasAuthorship W2912633045A5048838919 @default.
- W2912633045 hasAuthorship W2912633045A5066090465 @default.
- W2912633045 hasAuthorship W2912633045A5071979034 @default.
- W2912633045 hasConcept C108583219 @default.
- W2912633045 hasConcept C136536468 @default.
- W2912633045 hasConcept C153180895 @default.
- W2912633045 hasConcept C154945302 @default.
- W2912633045 hasConcept C34736171 @default.
- W2912633045 hasConcept C41008148 @default.
- W2912633045 hasConcept C54170458 @default.
- W2912633045 hasConcept C81363708 @default.
- W2912633045 hasConcept C89600930 @default.
- W2912633045 hasConceptScore W2912633045C108583219 @default.
- W2912633045 hasConceptScore W2912633045C136536468 @default.
- W2912633045 hasConceptScore W2912633045C153180895 @default.
- W2912633045 hasConceptScore W2912633045C154945302 @default.
- W2912633045 hasConceptScore W2912633045C34736171 @default.
- W2912633045 hasConceptScore W2912633045C41008148 @default.
- W2912633045 hasConceptScore W2912633045C54170458 @default.
- W2912633045 hasConceptScore W2912633045C81363708 @default.
- W2912633045 hasConceptScore W2912633045C89600930 @default.
- W2912633045 hasLocation W29126330451 @default.
- W2912633045 hasOpenAccess W2912633045 @default.
- W2912633045 hasPrimaryLocation W29126330451 @default.
- W2912633045 hasRelatedWork W2103386397 @default.
- W2912633045 hasRelatedWork W2342591535 @default.
- W2912633045 hasRelatedWork W2538301961 @default.
- W2912633045 hasRelatedWork W2572787276 @default.
- W2912633045 hasRelatedWork W2673946014 @default.
- W2912633045 hasRelatedWork W2762006829 @default.
- W2912633045 hasRelatedWork W2899211859 @default.
- W2912633045 hasRelatedWork W3121324630 @default.
- W2912633045 hasRelatedWork W3213228618 @default.
- W2912633045 hasRelatedWork W4229456164 @default.
- W2912633045 isParatext "false" @default.
- W2912633045 isRetracted "false" @default.
- W2912633045 magId "2912633045" @default.
- W2912633045 workType "book-chapter" @default.