Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912649459> ?p ?o ?g. }
- W2912649459 abstract "In this paper we study expander graphs and their minors. Specifically, we attempt to answer the following question: what is the largest function $f(n,alpha,d)$, such that every $n$-vertex $alpha$-expander with maximum vertex degree at most $d$ contains {bf every} graph $H$ with at most $f(n,alpha,d)$ edges and vertices as a minor? Our main result is that there is some universal constant $c$, such that $f(n,alpha,d)geq frac{n}{clog n}cdot left(frac{alpha}{d}right )^c$. This bound achieves a tight dependence on $n$: it is well known that there are bounded-degree $n$-vertex expanders, that do not contain any grid with $Omega(n/log n)$ vertices and edges as a minor. The best previous result showed that $f(n,alpha,d) geq Omega(n/log^{kappa}n)$, where $kappa$ depends on both $alpha$ and $d$. Additionally, we provide a randomized algorithm, that, given an $n$-vertex $alpha$-expander with maximum vertex degree at most $d$, and another graph $H$ containing at most $frac{n}{clog n}cdot left(frac{alpha}{d}right )^c$ vertices and edges, with high probability finds a model of $H$ in $G$, in time poly$(n)cdot (d/alpha)^{Oleft( log(d/alpha) right)}$. We note that similar but stronger results were independently obtained by Krivelevich and Nenadov: they show that $f(n,alpha,d)=Omega left(frac{nalpha^2}{d^2log n} right)$, and provide an efficient algorithm, that, given an $n$-vertex $alpha$-expander of maximum vertex degree at most $d$, and a graph $H$ with $Oleft( frac{nalpha^2}{d^2log n} right)$ vertices and edges, finds a model of $H$ in $G$. Finally, we observe that expanders are the `most minor-rich' family of graphs in the following sense: for every $n$-vertex and $m$-edge graph $G$, there exists a graph $H$ with $O left( frac{n+m}{log n} right)$ vertices and edges, such that $H$ is not a minor of $G$." @default.
- W2912649459 created "2019-02-21" @default.
- W2912649459 creator A5056023203 @default.
- W2912649459 creator A5056916494 @default.
- W2912649459 date "2019-01-27" @default.
- W2912649459 modified "2023-09-27" @default.
- W2912649459 title "Large Minors in Expanders." @default.
- W2912649459 cites W1550106322 @default.
- W2912649459 cites W1587744656 @default.
- W2912649459 cites W1606026804 @default.
- W2912649459 cites W1631603072 @default.
- W2912649459 cites W1969534344 @default.
- W2912649459 cites W1973646572 @default.
- W2912649459 cites W1989274820 @default.
- W2912649459 cites W1991445030 @default.
- W2912649459 cites W2005079828 @default.
- W2912649459 cites W2011334641 @default.
- W2912649459 cites W2012927698 @default.
- W2912649459 cites W2018047324 @default.
- W2912649459 cites W2019041817 @default.
- W2912649459 cites W2032312374 @default.
- W2912649459 cites W2057826895 @default.
- W2912649459 cites W2063544484 @default.
- W2912649459 cites W2084751542 @default.
- W2912649459 cites W2085348754 @default.
- W2912649459 cites W2096113666 @default.
- W2912649459 cites W2108736261 @default.
- W2912649459 cites W2109693504 @default.
- W2912649459 cites W2116038678 @default.
- W2912649459 cites W2127485201 @default.
- W2912649459 cites W2150148016 @default.
- W2912649459 cites W2157950582 @default.
- W2912649459 cites W2170380135 @default.
- W2912649459 cites W2271912178 @default.
- W2912649459 cites W2515641369 @default.
- W2912649459 cites W2563767922 @default.
- W2912649459 cites W2604607828 @default.
- W2912649459 cites W2907316818 @default.
- W2912649459 cites W2949325001 @default.
- W2912649459 cites W3093250435 @default.
- W2912649459 hasPublicationYear "2019" @default.
- W2912649459 type Work @default.
- W2912649459 sameAs 2912649459 @default.
- W2912649459 citedByCount "1" @default.
- W2912649459 countsByYear W29126494592021 @default.
- W2912649459 crossrefType "posted-content" @default.
- W2912649459 hasAuthorship W2912649459A5056023203 @default.
- W2912649459 hasAuthorship W2912649459A5056916494 @default.
- W2912649459 hasConcept C114614502 @default.
- W2912649459 hasConcept C121332964 @default.
- W2912649459 hasConcept C132525143 @default.
- W2912649459 hasConcept C134306372 @default.
- W2912649459 hasConcept C154547637 @default.
- W2912649459 hasConcept C24890656 @default.
- W2912649459 hasConcept C2775997480 @default.
- W2912649459 hasConcept C2779557605 @default.
- W2912649459 hasConcept C33923547 @default.
- W2912649459 hasConcept C34388435 @default.
- W2912649459 hasConcept C62520636 @default.
- W2912649459 hasConcept C77553402 @default.
- W2912649459 hasConcept C80899671 @default.
- W2912649459 hasConceptScore W2912649459C114614502 @default.
- W2912649459 hasConceptScore W2912649459C121332964 @default.
- W2912649459 hasConceptScore W2912649459C132525143 @default.
- W2912649459 hasConceptScore W2912649459C134306372 @default.
- W2912649459 hasConceptScore W2912649459C154547637 @default.
- W2912649459 hasConceptScore W2912649459C24890656 @default.
- W2912649459 hasConceptScore W2912649459C2775997480 @default.
- W2912649459 hasConceptScore W2912649459C2779557605 @default.
- W2912649459 hasConceptScore W2912649459C33923547 @default.
- W2912649459 hasConceptScore W2912649459C34388435 @default.
- W2912649459 hasConceptScore W2912649459C62520636 @default.
- W2912649459 hasConceptScore W2912649459C77553402 @default.
- W2912649459 hasConceptScore W2912649459C80899671 @default.
- W2912649459 hasLocation W29126494591 @default.
- W2912649459 hasOpenAccess W2912649459 @default.
- W2912649459 hasPrimaryLocation W29126494591 @default.
- W2912649459 hasRelatedWork W173266137 @default.
- W2912649459 hasRelatedWork W2003298043 @default.
- W2912649459 hasRelatedWork W2018169836 @default.
- W2912649459 hasRelatedWork W2032961882 @default.
- W2912649459 hasRelatedWork W2039138809 @default.
- W2912649459 hasRelatedWork W2058223880 @default.
- W2912649459 hasRelatedWork W2098345409 @default.
- W2912649459 hasRelatedWork W2279283583 @default.
- W2912649459 hasRelatedWork W2518307406 @default.
- W2912649459 hasRelatedWork W2751356910 @default.
- W2912649459 hasRelatedWork W2804735900 @default.
- W2912649459 hasRelatedWork W2900392597 @default.
- W2912649459 hasRelatedWork W2949424616 @default.
- W2912649459 hasRelatedWork W2949482322 @default.
- W2912649459 hasRelatedWork W2953040015 @default.
- W2912649459 hasRelatedWork W2965928990 @default.
- W2912649459 hasRelatedWork W2978106726 @default.
- W2912649459 hasRelatedWork W3134104610 @default.
- W2912649459 hasRelatedWork W3196709883 @default.
- W2912649459 hasRelatedWork W3205159214 @default.
- W2912649459 isParatext "false" @default.
- W2912649459 isRetracted "false" @default.
- W2912649459 magId "2912649459" @default.