Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912650274> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2912650274 abstract "Abstract Many urban cities in Southeast Asia are vulnerable to climate change. However, these cities are unable to take effective countermeasures to address vulnerabilities and adaptation due to insufficient data for flood analysis. Two important inputs required in flood analysis are high accuracy Digital Elevation Model (DEM), and long term rainfall record. This paper presents an innovative and cost-effective flood hazard assessment using remote sensing technology and Artificial Neural Network (ANN) to overcome such lack of data. Shuttle Radar Topography Mission (SRTM) and multispectral imagery of Sentinel-2 are used to derive a high-accuracy DEM using ANN. The improvement of SRTM’s DEM is significant with a 42.3% of reduction on Root Mean Square Error (RMSE) which allows the flood modelling to proceed with confidence. The Intensity Duration Frequency (IDF) curves that were constructed from precipitation outputs from a Regional Climate Model (RCM) Weather Research and Forecasting (WRF) were used in this study. Design storms, calculated from these IDF curves with different return periods were then applied to numerical flood simulations to identify flood prone areas. The approach is demonstrated in a flood hazard study in Kendal Regency, Indonesia. Flood map scenarios were generated using improved SRTM and design storms of 10-, 50- and 100-year re-turn periods were constructed using the MIKE 21 hydrodynamic model. This novel approach is innovative and cost-effective for flood hazard assessment using remote sensing and ANN to overcome lack of data. The results are useful for policy makers to understand the flood issues and to proceed flood mitigation adaptation/measures in addressing the impacts of climate change." @default.
- W2912650274 created "2019-02-21" @default.
- W2912650274 creator A5018336080 @default.
- W2912650274 creator A5028253456 @default.
- W2912650274 creator A5034566877 @default.
- W2912650274 date "2019-01-09" @default.
- W2912650274 modified "2023-10-02" @default.
- W2912650274 title "Overcoming data scarcity in flood hazard assessment using remote sensing and artificial neural network" @default.
- W2912650274 cites W1973149087 @default.
- W2912650274 cites W2031292142 @default.
- W2912650274 cites W2038683662 @default.
- W2912650274 cites W2056199992 @default.
- W2912650274 cites W2056435747 @default.
- W2912650274 cites W2090249381 @default.
- W2912650274 cites W2126647928 @default.
- W2912650274 cites W2127170577 @default.
- W2912650274 cites W2226892120 @default.
- W2912650274 cites W2325191682 @default.
- W2912650274 cites W2336483608 @default.
- W2912650274 cites W2530563849 @default.
- W2912650274 cites W2900676937 @default.
- W2912650274 doi "https://doi.org/10.1186/s40713-018-0014-5" @default.
- W2912650274 hasPublicationYear "2019" @default.
- W2912650274 type Work @default.
- W2912650274 sameAs 2912650274 @default.
- W2912650274 citedByCount "17" @default.
- W2912650274 countsByYear W29126502742020 @default.
- W2912650274 countsByYear W29126502742021 @default.
- W2912650274 countsByYear W29126502742022 @default.
- W2912650274 countsByYear W29126502742023 @default.
- W2912650274 crossrefType "journal-article" @default.
- W2912650274 hasAuthorship W2912650274A5018336080 @default.
- W2912650274 hasAuthorship W2912650274A5028253456 @default.
- W2912650274 hasAuthorship W2912650274A5034566877 @default.
- W2912650274 hasBestOaLocation W29126502741 @default.
- W2912650274 hasConcept C105306849 @default.
- W2912650274 hasConcept C111368507 @default.
- W2912650274 hasConcept C127313418 @default.
- W2912650274 hasConcept C132651083 @default.
- W2912650274 hasConcept C153294291 @default.
- W2912650274 hasConcept C166957645 @default.
- W2912650274 hasConcept C181843262 @default.
- W2912650274 hasConcept C183195422 @default.
- W2912650274 hasConcept C184149073 @default.
- W2912650274 hasConcept C205649164 @default.
- W2912650274 hasConcept C39410599 @default.
- W2912650274 hasConcept C39432304 @default.
- W2912650274 hasConcept C41008148 @default.
- W2912650274 hasConcept C62649853 @default.
- W2912650274 hasConcept C74256435 @default.
- W2912650274 hasConceptScore W2912650274C105306849 @default.
- W2912650274 hasConceptScore W2912650274C111368507 @default.
- W2912650274 hasConceptScore W2912650274C127313418 @default.
- W2912650274 hasConceptScore W2912650274C132651083 @default.
- W2912650274 hasConceptScore W2912650274C153294291 @default.
- W2912650274 hasConceptScore W2912650274C166957645 @default.
- W2912650274 hasConceptScore W2912650274C181843262 @default.
- W2912650274 hasConceptScore W2912650274C183195422 @default.
- W2912650274 hasConceptScore W2912650274C184149073 @default.
- W2912650274 hasConceptScore W2912650274C205649164 @default.
- W2912650274 hasConceptScore W2912650274C39410599 @default.
- W2912650274 hasConceptScore W2912650274C39432304 @default.
- W2912650274 hasConceptScore W2912650274C41008148 @default.
- W2912650274 hasConceptScore W2912650274C62649853 @default.
- W2912650274 hasConceptScore W2912650274C74256435 @default.
- W2912650274 hasIssue "1" @default.
- W2912650274 hasLocation W29126502741 @default.
- W2912650274 hasOpenAccess W2912650274 @default.
- W2912650274 hasPrimaryLocation W29126502741 @default.
- W2912650274 hasRelatedWork W1483032388 @default.
- W2912650274 hasRelatedWork W1559353931 @default.
- W2912650274 hasRelatedWork W2010404962 @default.
- W2912650274 hasRelatedWork W2900487006 @default.
- W2912650274 hasRelatedWork W2912650274 @default.
- W2912650274 hasRelatedWork W3189447145 @default.
- W2912650274 hasRelatedWork W3199160978 @default.
- W2912650274 hasRelatedWork W3214716400 @default.
- W2912650274 hasRelatedWork W4306875462 @default.
- W2912650274 hasRelatedWork W4378085746 @default.
- W2912650274 hasVolume "4" @default.
- W2912650274 isParatext "false" @default.
- W2912650274 isRetracted "false" @default.
- W2912650274 magId "2912650274" @default.
- W2912650274 workType "article" @default.