Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912650435> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2912650435 abstract "The interaction between matter and electromagnetic radiation provides a rich understanding of what the matter is composed of and how it can be quantified using spectrometers. In many cases, however, the calibration of the spectrometer changes as a function of time (such as in electron spectrometers), or the absolute calibration may be different between different instruments. Calibration differences cause difficulties in comparing the absolute position of measured emission or absorption peaks between different instruments and even different measurements taken at different times on the same instrument. Present methods of avoiding this issue involve manual feature extraction of the original signal or qualitative analysis. Here we propose automated feature extraction using deep convolutional neural networks to determine the class of compound given only the shape of the spectrum. We classify three unique electronic environments of manganese (being relevant to many battery materials applications) in electron energy loss spectroscopy using 2001 spectra we collected in addition to testing on spectra from different instruments. We test a variety of commonly used neural network architectures found in the literature and propose a new fully convolutional architecture with improved translation-invariance which is immune to calibration differences." @default.
- W2912650435 created "2019-02-21" @default.
- W2912650435 creator A5053877083 @default.
- W2912650435 creator A5067478405 @default.
- W2912650435 date "2019-02-14" @default.
- W2912650435 modified "2023-10-14" @default.
- W2912650435 title "Towards calibration-invariant spectroscopy using deep learning" @default.
- W2912650435 cites W1985964670 @default.
- W2912650435 cites W1989447781 @default.
- W2912650435 cites W1989955379 @default.
- W2912650435 cites W2059216682 @default.
- W2912650435 cites W2079601813 @default.
- W2912650435 cites W2083139252 @default.
- W2912650435 cites W2088897029 @default.
- W2912650435 cites W2121572307 @default.
- W2912650435 cites W2150333870 @default.
- W2912650435 cites W2164187019 @default.
- W2912650435 cites W2171326604 @default.
- W2912650435 cites W2183341477 @default.
- W2912650435 cites W2319554299 @default.
- W2912650435 cites W2327475005 @default.
- W2912650435 cites W2499316477 @default.
- W2912650435 cites W2752532133 @default.
- W2912650435 cites W2757533756 @default.
- W2912650435 cites W3101798760 @default.
- W2912650435 doi "https://doi.org/10.1038/s41598-019-38482-1" @default.
- W2912650435 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6376024" @default.
- W2912650435 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30765890" @default.
- W2912650435 hasPublicationYear "2019" @default.
- W2912650435 type Work @default.
- W2912650435 sameAs 2912650435 @default.
- W2912650435 citedByCount "57" @default.
- W2912650435 countsByYear W29126504352020 @default.
- W2912650435 countsByYear W29126504352021 @default.
- W2912650435 countsByYear W29126504352022 @default.
- W2912650435 countsByYear W29126504352023 @default.
- W2912650435 crossrefType "journal-article" @default.
- W2912650435 hasAuthorship W2912650435A5053877083 @default.
- W2912650435 hasAuthorship W2912650435A5067478405 @default.
- W2912650435 hasBestOaLocation W29126504351 @default.
- W2912650435 hasConcept C105795698 @default.
- W2912650435 hasConcept C120665830 @default.
- W2912650435 hasConcept C121332964 @default.
- W2912650435 hasConcept C153180895 @default.
- W2912650435 hasConcept C154945302 @default.
- W2912650435 hasConcept C165838908 @default.
- W2912650435 hasConcept C190470478 @default.
- W2912650435 hasConcept C32891209 @default.
- W2912650435 hasConcept C33390570 @default.
- W2912650435 hasConcept C33923547 @default.
- W2912650435 hasConcept C37914503 @default.
- W2912650435 hasConcept C41008148 @default.
- W2912650435 hasConcept C62520636 @default.
- W2912650435 hasConcept C81363708 @default.
- W2912650435 hasConceptScore W2912650435C105795698 @default.
- W2912650435 hasConceptScore W2912650435C120665830 @default.
- W2912650435 hasConceptScore W2912650435C121332964 @default.
- W2912650435 hasConceptScore W2912650435C153180895 @default.
- W2912650435 hasConceptScore W2912650435C154945302 @default.
- W2912650435 hasConceptScore W2912650435C165838908 @default.
- W2912650435 hasConceptScore W2912650435C190470478 @default.
- W2912650435 hasConceptScore W2912650435C32891209 @default.
- W2912650435 hasConceptScore W2912650435C33390570 @default.
- W2912650435 hasConceptScore W2912650435C33923547 @default.
- W2912650435 hasConceptScore W2912650435C37914503 @default.
- W2912650435 hasConceptScore W2912650435C41008148 @default.
- W2912650435 hasConceptScore W2912650435C62520636 @default.
- W2912650435 hasConceptScore W2912650435C81363708 @default.
- W2912650435 hasIssue "1" @default.
- W2912650435 hasLocation W29126504351 @default.
- W2912650435 hasLocation W29126504352 @default.
- W2912650435 hasLocation W29126504353 @default.
- W2912650435 hasLocation W29126504354 @default.
- W2912650435 hasOpenAccess W2912650435 @default.
- W2912650435 hasPrimaryLocation W29126504351 @default.
- W2912650435 hasRelatedWork W1615230877 @default.
- W2912650435 hasRelatedWork W2024980269 @default.
- W2912650435 hasRelatedWork W2034252408 @default.
- W2912650435 hasRelatedWork W2065686537 @default.
- W2912650435 hasRelatedWork W2065792876 @default.
- W2912650435 hasRelatedWork W256685106 @default.
- W2912650435 hasRelatedWork W2977472720 @default.
- W2912650435 hasRelatedWork W4205152749 @default.
- W2912650435 hasRelatedWork W4210280298 @default.
- W2912650435 hasRelatedWork W4244513755 @default.
- W2912650435 hasVolume "9" @default.
- W2912650435 isParatext "false" @default.
- W2912650435 isRetracted "false" @default.
- W2912650435 magId "2912650435" @default.
- W2912650435 workType "article" @default.