Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912651793> ?p ?o ?g. }
- W2912651793 endingPage "532" @default.
- W2912651793 startingPage "520" @default.
- W2912651793 abstract "Over the last decade, there has been a rapid growth in the generation and analysis of the genomics data. Though the existing data analysis methods are capable of handling a particular problem, they cannot guarantee to solve all problems with different nature. Therefore, there always lie a scope of a new algorithm to solve a problem which cannot be efficiently solved by the existing algorithms. In the present work, a novel hybrid approach is proposed based on the improved version of a recently developed bio-inspired optimization technique, namely, salp swarm algorithm (SSA) for microarray classification. Initially, the Fisher score filter is employed to pre-select a subset of relevant genes from the original high-dimensional microarray dataset. Later, a weighted-chaotic SSA (WCSSA) is proposed for the simultaneous optimal gene selection and parameter optimization of the kernel extreme learning machine (KELM) classifier. The proposed scheme is experimented on both binary-class and multi-class microarray datasets. An extensive comparison is performed against original SSA-KELM, particle swarm optimized-KELM (PSO-KELM), and genetic algorithm-KELM (GA-KELM). Lastly, the proposed method is also compared against the results of sixteen existing techniques to emphasize its capacity and competitiveness to successfully reduce the number of original genes by more than 98%. The experimental results show that the genes selected by the proposed method yield higher classification accuracy compared to the alternative techniques. The performance of the proposed scheme demonstrates its effectiveness in terms of number of selected genes (NSG), accuracy, sensitivity, specificity, Matthews correlation coefficient (MCC), and F-measure. The proposed WCSSA-KELM method is validated using a ten-fold cross-validation technique." @default.
- W2912651793 created "2019-02-21" @default.
- W2912651793 creator A5000531819 @default.
- W2912651793 creator A5018267985 @default.
- W2912651793 creator A5027955724 @default.
- W2912651793 creator A5068696661 @default.
- W2912651793 creator A5078876770 @default.
- W2912651793 date "2019-04-01" @default.
- W2912651793 modified "2023-10-18" @default.
- W2912651793 title "Analysis of high-dimensional genomic data employing a novel bio-inspired algorithm" @default.
- W2912651793 cites W1851861644 @default.
- W2912651793 cites W1968904042 @default.
- W2912651793 cites W1985900816 @default.
- W2912651793 cites W2019184705 @default.
- W2912651793 cites W2019683663 @default.
- W2912651793 cites W2023474976 @default.
- W2912651793 cites W2026131661 @default.
- W2912651793 cites W2027893113 @default.
- W2912651793 cites W2043117900 @default.
- W2912651793 cites W2047904721 @default.
- W2912651793 cites W2056296562 @default.
- W2912651793 cites W2062830115 @default.
- W2912651793 cites W2086622126 @default.
- W2912651793 cites W2087684630 @default.
- W2912651793 cites W2091637400 @default.
- W2912651793 cites W2095405940 @default.
- W2912651793 cites W2097413644 @default.
- W2912651793 cites W2109363337 @default.
- W2912651793 cites W2109553965 @default.
- W2912651793 cites W2111072639 @default.
- W2912651793 cites W2120901529 @default.
- W2912651793 cites W2134389439 @default.
- W2912651793 cites W2171263752 @default.
- W2912651793 cites W2277013294 @default.
- W2912651793 cites W2292274018 @default.
- W2912651793 cites W2470502497 @default.
- W2912651793 cites W2486398192 @default.
- W2912651793 cites W2519976284 @default.
- W2912651793 cites W254399443 @default.
- W2912651793 cites W2582636227 @default.
- W2912651793 cites W2585784318 @default.
- W2912651793 cites W2613853826 @default.
- W2912651793 cites W2738900493 @default.
- W2912651793 cites W2766708656 @default.
- W2912651793 cites W2780222614 @default.
- W2912651793 cites W2792689221 @default.
- W2912651793 cites W2793947836 @default.
- W2912651793 cites W2795153861 @default.
- W2912651793 cites W2799456480 @default.
- W2912651793 cites W2801232162 @default.
- W2912651793 cites W2801536506 @default.
- W2912651793 cites W2802013757 @default.
- W2912651793 cites W2808891523 @default.
- W2912651793 doi "https://doi.org/10.1016/j.asoc.2019.01.007" @default.
- W2912651793 hasPublicationYear "2019" @default.
- W2912651793 type Work @default.
- W2912651793 sameAs 2912651793 @default.
- W2912651793 citedByCount "37" @default.
- W2912651793 countsByYear W29126517932019 @default.
- W2912651793 countsByYear W29126517932020 @default.
- W2912651793 countsByYear W29126517932021 @default.
- W2912651793 countsByYear W29126517932022 @default.
- W2912651793 countsByYear W29126517932023 @default.
- W2912651793 crossrefType "journal-article" @default.
- W2912651793 hasAuthorship W2912651793A5000531819 @default.
- W2912651793 hasAuthorship W2912651793A5018267985 @default.
- W2912651793 hasAuthorship W2912651793A5027955724 @default.
- W2912651793 hasAuthorship W2912651793A5068696661 @default.
- W2912651793 hasAuthorship W2912651793A5078876770 @default.
- W2912651793 hasConcept C104317684 @default.
- W2912651793 hasConcept C109718341 @default.
- W2912651793 hasConcept C11413529 @default.
- W2912651793 hasConcept C119857082 @default.
- W2912651793 hasConcept C124101348 @default.
- W2912651793 hasConcept C150194340 @default.
- W2912651793 hasConcept C154945302 @default.
- W2912651793 hasConcept C185592680 @default.
- W2912651793 hasConcept C2984324147 @default.
- W2912651793 hasConcept C41008148 @default.
- W2912651793 hasConcept C55493867 @default.
- W2912651793 hasConcept C8415881 @default.
- W2912651793 hasConcept C85617194 @default.
- W2912651793 hasConcept C8880873 @default.
- W2912651793 hasConcept C95623464 @default.
- W2912651793 hasConceptScore W2912651793C104317684 @default.
- W2912651793 hasConceptScore W2912651793C109718341 @default.
- W2912651793 hasConceptScore W2912651793C11413529 @default.
- W2912651793 hasConceptScore W2912651793C119857082 @default.
- W2912651793 hasConceptScore W2912651793C124101348 @default.
- W2912651793 hasConceptScore W2912651793C150194340 @default.
- W2912651793 hasConceptScore W2912651793C154945302 @default.
- W2912651793 hasConceptScore W2912651793C185592680 @default.
- W2912651793 hasConceptScore W2912651793C2984324147 @default.
- W2912651793 hasConceptScore W2912651793C41008148 @default.
- W2912651793 hasConceptScore W2912651793C55493867 @default.
- W2912651793 hasConceptScore W2912651793C8415881 @default.
- W2912651793 hasConceptScore W2912651793C85617194 @default.
- W2912651793 hasConceptScore W2912651793C8880873 @default.