Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912657755> ?p ?o ?g. }
- W2912657755 endingPage "111051" @default.
- W2912657755 startingPage "111051" @default.
- W2912657755 abstract "The REDD+ mechanism of UNFCCC was established to reduce greenhouse gases emissions by means of financial incentives. Of importance to the success of REDD+ and similar initiatives is the provision of credible evidence of reductions in the extent of land change activities that release carbon to the atmosphere (e.g. deforestation). The criteria for reporting land change areas and associated emissions within REDD+ stipulate the use of sampling-based approaches, which allow for unbiased estimation and uncertainty quantification. But for economic compensation for emission reductions to be feasible, agreements between participating countries and donors often require reporting every year or every second year. With the rates of land change typically being very small relative to the total study area, sampling-based approaches for estimation of annual or bi-annual areas have proven problematic, especially when comparing area estimates over time. In this paper, we present a methodology for monitoring and estimating areas of land change activity at high temporal resolution that is compliant with international guidelines. The methodology is based on a break detection algorithm applied to time series of Landsat data in the Colombian Amazon between 2001 and 2016. A biennial stratified sampling approach was implemented to (1) remove the bias introduced by the change detection and classification algorithm in mapped areas derived from pixel-counting; and (2) provide confidence intervals for area estimates obtained from the reference data collected for the sample. Our results show that estimating the area of land change, like deforestation, at annual or bi-annual resolution is inherently challenging and associated with high degrees of uncertainty. We found that better precision was achieved if independent sample datasets of reference observations were collected for each time interval for which area estimates are required. The alternative of selecting one sample of continuous reference observations analyzed for inference of area for each time interval did not yield area estimates significantly different from zero. Also, when large stable land covers (primary forest in this case, occupying almost 90% of the study area) are present in the study area in combination with small rates of land change activity, the impact of omission errors in the map used for stratifying the study area will be substantial and potentially detrimental to usefulness of land change studies. The introduction of a buffer stratum around areas of mapped land change reduced the uncertainty in area estimates by up to 98%. Results indicate that the Colombian Amazon has experienced a small but steady decrease in primary forest due to establishment of pastures, with forest-to-pasture conversion reaching 103 ± 30 kha (95% confidence interval) in the period between 2013 and 2015, corresponding to 0.22% of the study area. Around 29 ± 17 kha (95% CI) of pastureland that had been abandoned shortly after establishment reverted to secondary forest within the same period. Other gains of secondary forest from more permanent pastures averaged about 12 ± 11 kha (95% CI), while losses of secondary forest averaged 20 ± 12 kha (95% CI)." @default.
- W2912657755 created "2019-02-21" @default.
- W2912657755 creator A5013421915 @default.
- W2912657755 creator A5050997630 @default.
- W2912657755 creator A5086318321 @default.
- W2912657755 date "2020-03-01" @default.
- W2912657755 modified "2023-10-02" @default.
- W2912657755 title "Continuous monitoring of land change activities and post-disturbance dynamics from Landsat time series: A test methodology for REDD+ reporting" @default.
- W2912657755 cites W1834239181 @default.
- W2912657755 cites W1905063915 @default.
- W2912657755 cites W1964996721 @default.
- W2912657755 cites W1967575690 @default.
- W2912657755 cites W1970253947 @default.
- W2912657755 cites W1981213426 @default.
- W2912657755 cites W1998843668 @default.
- W2912657755 cites W2000853885 @default.
- W2912657755 cites W2003034323 @default.
- W2912657755 cites W2005056218 @default.
- W2912657755 cites W2011500029 @default.
- W2912657755 cites W2028240797 @default.
- W2912657755 cites W2030851497 @default.
- W2912657755 cites W2030864384 @default.
- W2912657755 cites W2033809437 @default.
- W2912657755 cites W2040667072 @default.
- W2912657755 cites W2050904611 @default.
- W2912657755 cites W2052605829 @default.
- W2912657755 cites W2055718260 @default.
- W2912657755 cites W2068167377 @default.
- W2912657755 cites W2076111734 @default.
- W2912657755 cites W2078283574 @default.
- W2912657755 cites W2086620533 @default.
- W2912657755 cites W2094738700 @default.
- W2912657755 cites W2100930549 @default.
- W2912657755 cites W2114750096 @default.
- W2912657755 cites W2114892242 @default.
- W2912657755 cites W2117141344 @default.
- W2912657755 cites W2125075499 @default.
- W2912657755 cites W2125401957 @default.
- W2912657755 cites W2128789255 @default.
- W2912657755 cites W2140908571 @default.
- W2912657755 cites W2145327161 @default.
- W2912657755 cites W2158607425 @default.
- W2912657755 cites W2161336494 @default.
- W2912657755 cites W2166394891 @default.
- W2912657755 cites W2177187964 @default.
- W2912657755 cites W2207489776 @default.
- W2912657755 cites W2220080531 @default.
- W2912657755 cites W2261784637 @default.
- W2912657755 cites W2331787347 @default.
- W2912657755 cites W2528207149 @default.
- W2912657755 cites W2580696810 @default.
- W2912657755 cites W2744060687 @default.
- W2912657755 cites W2747065180 @default.
- W2912657755 cites W2756906114 @default.
- W2912657755 cites W2911964244 @default.
- W2912657755 doi "https://doi.org/10.1016/j.rse.2019.01.013" @default.
- W2912657755 hasPublicationYear "2020" @default.
- W2912657755 type Work @default.
- W2912657755 sameAs 2912657755 @default.
- W2912657755 citedByCount "52" @default.
- W2912657755 countsByYear W29126577552019 @default.
- W2912657755 countsByYear W29126577552020 @default.
- W2912657755 countsByYear W29126577552021 @default.
- W2912657755 countsByYear W29126577552022 @default.
- W2912657755 countsByYear W29126577552023 @default.
- W2912657755 crossrefType "journal-article" @default.
- W2912657755 hasAuthorship W2912657755A5013421915 @default.
- W2912657755 hasAuthorship W2912657755A5050997630 @default.
- W2912657755 hasAuthorship W2912657755A5086318321 @default.
- W2912657755 hasBestOaLocation W29126577551 @default.
- W2912657755 hasConcept C107826830 @default.
- W2912657755 hasConcept C111368507 @default.
- W2912657755 hasConcept C122690726 @default.
- W2912657755 hasConcept C12725497 @default.
- W2912657755 hasConcept C127313418 @default.
- W2912657755 hasConcept C127413603 @default.
- W2912657755 hasConcept C132651083 @default.
- W2912657755 hasConcept C140779682 @default.
- W2912657755 hasConcept C147176958 @default.
- W2912657755 hasConcept C185592680 @default.
- W2912657755 hasConcept C18903297 @default.
- W2912657755 hasConcept C198531522 @default.
- W2912657755 hasConcept C199360897 @default.
- W2912657755 hasConcept C203595873 @default.
- W2912657755 hasConcept C205649164 @default.
- W2912657755 hasConcept C2777399953 @default.
- W2912657755 hasConcept C39432304 @default.
- W2912657755 hasConcept C41008148 @default.
- W2912657755 hasConcept C43617362 @default.
- W2912657755 hasConcept C47737302 @default.
- W2912657755 hasConcept C4792198 @default.
- W2912657755 hasConcept C62649853 @default.
- W2912657755 hasConcept C76155785 @default.
- W2912657755 hasConcept C86803240 @default.
- W2912657755 hasConcept C94915269 @default.
- W2912657755 hasConceptScore W2912657755C107826830 @default.
- W2912657755 hasConceptScore W2912657755C111368507 @default.
- W2912657755 hasConceptScore W2912657755C122690726 @default.