Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912660046> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W2912660046 abstract "Recently, Generative Adversarial Networks (GANs) have emerged as a popular alternative for modeling complex high dimensional distributions. Most of the existing works implicitly assume that the clean samples from the target distribution are easily available. However, in many applications, this assumption is violated. In this paper, we consider the observation setting when the samples from target distribution are given by the superposition of two structured components and leverage GANs for learning the structure of the components. We propose two novel frameworks: denoising-GAN and demixing-GAN. The denoising-GAN assumes access to clean samples from the second component and try to learn the other distribution, whereas demixing-GAN learns the distribution of the components at the same time. Through extensive numerical experiments, we demonstrate that proposed frameworks can generate clean samples from unknown distributions, and provide competitive performance in tasks such as denoising, demixing, and compressive sensing." @default.
- W2912660046 created "2019-02-21" @default.
- W2912660046 creator A5034858834 @default.
- W2912660046 creator A5034886444 @default.
- W2912660046 creator A5058890241 @default.
- W2912660046 date "2019-02-12" @default.
- W2912660046 modified "2023-09-27" @default.
- W2912660046 title "Learning Generative Models of Structured Signals from Their Superposition Using GANs with Application to Denoising and Demixing." @default.
- W2912660046 cites W1959608418 @default.
- W2912660046 cites W1999905919 @default.
- W2912660046 cites W2051237969 @default.
- W2912660046 cites W2073354302 @default.
- W2912660046 cites W2078204800 @default.
- W2912660046 cites W2099471712 @default.
- W2912660046 cites W2101234009 @default.
- W2912660046 cites W2121651107 @default.
- W2912660046 cites W2130357047 @default.
- W2912660046 cites W2145962650 @default.
- W2912660046 cites W2153663612 @default.
- W2912660046 cites W2173520492 @default.
- W2912660046 cites W2276264306 @default.
- W2912660046 cites W2335728318 @default.
- W2912660046 cites W2479644247 @default.
- W2912660046 cites W2487980609 @default.
- W2912660046 cites W2519536754 @default.
- W2912660046 cites W2520707650 @default.
- W2912660046 cites W2546066744 @default.
- W2912660046 cites W2577946330 @default.
- W2912660046 cites W2582191739 @default.
- W2912660046 cites W2587928808 @default.
- W2912660046 cites W2595294663 @default.
- W2912660046 cites W2605195953 @default.
- W2912660046 cites W2702151563 @default.
- W2912660046 cites W2739748921 @default.
- W2912660046 cites W2750384547 @default.
- W2912660046 cites W2785532149 @default.
- W2912660046 cites W2787898208 @default.
- W2912660046 cites W2804184144 @default.
- W2912660046 cites W2962793481 @default.
- W2912660046 cites W2963115786 @default.
- W2912660046 cites W2963226019 @default.
- W2912660046 cites W2963341557 @default.
- W2912660046 cites W2963816101 @default.
- W2912660046 cites W2964013315 @default.
- W2912660046 hasPublicationYear "2019" @default.
- W2912660046 type Work @default.
- W2912660046 sameAs 2912660046 @default.
- W2912660046 citedByCount "1" @default.
- W2912660046 countsByYear W29126600462020 @default.
- W2912660046 crossrefType "posted-content" @default.
- W2912660046 hasAuthorship W2912660046A5034858834 @default.
- W2912660046 hasAuthorship W2912660046A5034886444 @default.
- W2912660046 hasAuthorship W2912660046A5058890241 @default.
- W2912660046 hasConcept C11413529 @default.
- W2912660046 hasConcept C134306372 @default.
- W2912660046 hasConcept C153083717 @default.
- W2912660046 hasConcept C153180895 @default.
- W2912660046 hasConcept C154945302 @default.
- W2912660046 hasConcept C163294075 @default.
- W2912660046 hasConcept C27753989 @default.
- W2912660046 hasConcept C33923547 @default.
- W2912660046 hasConcept C39890363 @default.
- W2912660046 hasConcept C41008148 @default.
- W2912660046 hasConceptScore W2912660046C11413529 @default.
- W2912660046 hasConceptScore W2912660046C134306372 @default.
- W2912660046 hasConceptScore W2912660046C153083717 @default.
- W2912660046 hasConceptScore W2912660046C153180895 @default.
- W2912660046 hasConceptScore W2912660046C154945302 @default.
- W2912660046 hasConceptScore W2912660046C163294075 @default.
- W2912660046 hasConceptScore W2912660046C27753989 @default.
- W2912660046 hasConceptScore W2912660046C33923547 @default.
- W2912660046 hasConceptScore W2912660046C39890363 @default.
- W2912660046 hasConceptScore W2912660046C41008148 @default.
- W2912660046 hasLocation W29126600461 @default.
- W2912660046 hasOpenAccess W2912660046 @default.
- W2912660046 hasPrimaryLocation W29126600461 @default.
- W2912660046 hasRelatedWork W2128514094 @default.
- W2912660046 hasRelatedWork W2192495397 @default.
- W2912660046 hasRelatedWork W2206458544 @default.
- W2912660046 hasRelatedWork W2282377716 @default.
- W2912660046 hasRelatedWork W2765784531 @default.
- W2912660046 hasRelatedWork W2884473567 @default.
- W2912660046 hasRelatedWork W2900651731 @default.
- W2912660046 hasRelatedWork W2914950813 @default.
- W2912660046 hasRelatedWork W2967826146 @default.
- W2912660046 hasRelatedWork W2997473052 @default.
- W2912660046 hasRelatedWork W3004148804 @default.
- W2912660046 hasRelatedWork W3009125789 @default.
- W2912660046 hasRelatedWork W3009154374 @default.
- W2912660046 hasRelatedWork W3036592304 @default.
- W2912660046 hasRelatedWork W3093652873 @default.
- W2912660046 hasRelatedWork W3108743765 @default.
- W2912660046 hasRelatedWork W3132332328 @default.
- W2912660046 hasRelatedWork W3184771695 @default.
- W2912660046 hasRelatedWork W3203671190 @default.
- W2912660046 hasRelatedWork W3207632050 @default.
- W2912660046 isParatext "false" @default.
- W2912660046 isRetracted "false" @default.
- W2912660046 magId "2912660046" @default.
- W2912660046 workType "article" @default.