Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912661780> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W2912661780 endingPage "152" @default.
- W2912661780 startingPage "141" @default.
- W2912661780 abstract "Blood and its components have an important place in human life and are the best indicator tool in determining many pathological conditions. In particular, the classification of white blood cells is of great importance for the diagnosis of hematological diseases. In this study, 350 microscopic blood smear images were tested with 6 different machine learning algorithms for the classification of white blood cells and their performances were compared. 35 different geometric and statistical (texture) features have been extracted from blood images for training and test parameters of machine learning algorithms. According to the results, the Multinomial Logistic Regression (MLR) algorithm performed better than the other methods with an average 95% test success. The MLR can be used for automatic classification of white blood cells. It can be used especially as a source for diagnosis of diseases for hematologists and internal medicine specialists." @default.
- W2912661780 created "2019-02-21" @default.
- W2912661780 creator A5036864780 @default.
- W2912661780 creator A5067708193 @default.
- W2912661780 date "2019-01-31" @default.
- W2912661780 modified "2023-09-25" @default.
- W2912661780 title "Classifying White Blood Cells Using Machine Learning Algorithms" @default.
- W2912661780 cites W1485147006 @default.
- W2912661780 cites W1608433052 @default.
- W2912661780 cites W1935106270 @default.
- W2912661780 cites W1971819012 @default.
- W2912661780 cites W1986412518 @default.
- W2912661780 cites W2046224179 @default.
- W2912661780 cites W2046829180 @default.
- W2912661780 cites W2048438788 @default.
- W2912661780 cites W2055939299 @default.
- W2912661780 cites W2060706129 @default.
- W2912661780 cites W2061880140 @default.
- W2912661780 cites W2069017882 @default.
- W2912661780 cites W2117333179 @default.
- W2912661780 cites W2119599039 @default.
- W2912661780 cites W2122111042 @default.
- W2912661780 cites W2122926606 @default.
- W2912661780 cites W2129738816 @default.
- W2912661780 cites W2131587055 @default.
- W2912661780 cites W2155632266 @default.
- W2912661780 cites W2159139920 @default.
- W2912661780 cites W2196598587 @default.
- W2912661780 cites W2324898630 @default.
- W2912661780 cites W2498119267 @default.
- W2912661780 cites W2542863396 @default.
- W2912661780 cites W2768636037 @default.
- W2912661780 cites W2803469998 @default.
- W2912661780 cites W2911964244 @default.
- W2912661780 cites W3011685483 @default.
- W2912661780 cites W4230809764 @default.
- W2912661780 cites W4239510810 @default.
- W2912661780 doi "https://doi.org/10.29137/umagd.498372" @default.
- W2912661780 hasPublicationYear "2019" @default.
- W2912661780 type Work @default.
- W2912661780 sameAs 2912661780 @default.
- W2912661780 citedByCount "6" @default.
- W2912661780 countsByYear W29126617802020 @default.
- W2912661780 countsByYear W29126617802021 @default.
- W2912661780 countsByYear W29126617802022 @default.
- W2912661780 countsByYear W29126617802023 @default.
- W2912661780 crossrefType "journal-article" @default.
- W2912661780 hasAuthorship W2912661780A5036864780 @default.
- W2912661780 hasAuthorship W2912661780A5067708193 @default.
- W2912661780 hasBestOaLocation W29126617801 @default.
- W2912661780 hasConcept C11413529 @default.
- W2912661780 hasConcept C117568660 @default.
- W2912661780 hasConcept C119857082 @default.
- W2912661780 hasConcept C142724271 @default.
- W2912661780 hasConcept C151956035 @default.
- W2912661780 hasConcept C153180895 @default.
- W2912661780 hasConcept C154945302 @default.
- W2912661780 hasConcept C2778048844 @default.
- W2912661780 hasConcept C3017819844 @default.
- W2912661780 hasConcept C41008148 @default.
- W2912661780 hasConcept C71924100 @default.
- W2912661780 hasConceptScore W2912661780C11413529 @default.
- W2912661780 hasConceptScore W2912661780C117568660 @default.
- W2912661780 hasConceptScore W2912661780C119857082 @default.
- W2912661780 hasConceptScore W2912661780C142724271 @default.
- W2912661780 hasConceptScore W2912661780C151956035 @default.
- W2912661780 hasConceptScore W2912661780C153180895 @default.
- W2912661780 hasConceptScore W2912661780C154945302 @default.
- W2912661780 hasConceptScore W2912661780C2778048844 @default.
- W2912661780 hasConceptScore W2912661780C3017819844 @default.
- W2912661780 hasConceptScore W2912661780C41008148 @default.
- W2912661780 hasConceptScore W2912661780C71924100 @default.
- W2912661780 hasLocation W29126617801 @default.
- W2912661780 hasLocation W29126617802 @default.
- W2912661780 hasOpenAccess W2912661780 @default.
- W2912661780 hasPrimaryLocation W29126617801 @default.
- W2912661780 hasRelatedWork W1582951599 @default.
- W2912661780 hasRelatedWork W195509626 @default.
- W2912661780 hasRelatedWork W2104977651 @default.
- W2912661780 hasRelatedWork W2369306031 @default.
- W2912661780 hasRelatedWork W2748952813 @default.
- W2912661780 hasRelatedWork W2899084033 @default.
- W2912661780 hasRelatedWork W2961085424 @default.
- W2912661780 hasRelatedWork W3033697969 @default.
- W2912661780 hasRelatedWork W4306674287 @default.
- W2912661780 hasRelatedWork W4316658362 @default.
- W2912661780 isParatext "false" @default.
- W2912661780 isRetracted "false" @default.
- W2912661780 magId "2912661780" @default.
- W2912661780 workType "article" @default.