Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912668153> ?p ?o ?g. }
- W2912668153 endingPage "425" @default.
- W2912668153 startingPage "410" @default.
- W2912668153 abstract "Detection of ischemic stroke lesions plays a vital role in the assessment of stroke treatments such as thrombolytic therapy and embolectomy. Manual detection and quantification of stroke lesions is a time-consuming and cumbersome process. In this paper, we present a novel automatic method to detect acute ischemic stroke lesions from Magnetic Resonance Image (MRI) volumes using textural and unsupervised learned features. The proposed method proficiently exploits the 3D contextual evidence using a patch-based approach, which extracts patches randomly from the input MR volumes. Textural feature extraction (TFE) using Gray Level Co-occurrence Matrix (GLCM) and unsupervised feature learning (UFL) based on k-means clustering approaches are employed independently to extract features from the input patches. These features obtained from the two feature extractors are then given as input to the Random Forest (RF) classifier to discriminate between normal and lesion classes. A hybrid approach based on the combination of TFE using GLCM and UFL based on the k-means clustering is proposed in this work. Hybrid combination approach results in more discriminative feature set compared with the traditional approaches. The proposed method has been evaluated on the Ischemic Stroke Lesion Segmentation (ISLES) 2015 training dataset. The proposed method achieved an overall dice coefficient (DC) of 0.886, precision of 0.979, recall of 0.831 and accuracy of 0.8201. Quantitative measures show that the proposed approach is 28.4%, 27.14%, and 5.19% higher than the existing methods in terms of DC, precision, and recall, respectively." @default.
- W2912668153 created "2019-02-21" @default.
- W2912668153 creator A5000707727 @default.
- W2912668153 creator A5013880320 @default.
- W2912668153 creator A5017149028 @default.
- W2912668153 creator A5059420585 @default.
- W2912668153 date "2019-04-01" @default.
- W2912668153 modified "2023-09-27" @default.
- W2912668153 title "Combination of hand-crafted and unsupervised learned features for ischemic stroke lesion detection from Magnetic Resonance Images" @default.
- W2912668153 cites W1215380709 @default.
- W2912668153 cites W1770510060 @default.
- W2912668153 cites W1812081778 @default.
- W2912668153 cites W1987452933 @default.
- W2912668153 cites W1990653740 @default.
- W2912668153 cites W2018151989 @default.
- W2912668153 cites W2044465660 @default.
- W2912668153 cites W2048055195 @default.
- W2912668153 cites W2058795246 @default.
- W2912668153 cites W2060759724 @default.
- W2912668153 cites W2071128523 @default.
- W2912668153 cites W2072957471 @default.
- W2912668153 cites W2079934729 @default.
- W2912668153 cites W2089574592 @default.
- W2912668153 cites W2097805840 @default.
- W2912668153 cites W2119232786 @default.
- W2912668153 cites W2124552672 @default.
- W2912668153 cites W2136922672 @default.
- W2912668153 cites W2137234026 @default.
- W2912668153 cites W2161591846 @default.
- W2912668153 cites W2217077692 @default.
- W2912668153 cites W2224559554 @default.
- W2912668153 cites W2301358467 @default.
- W2912668153 cites W2484736472 @default.
- W2912668153 cites W2568519865 @default.
- W2912668153 cites W2621028221 @default.
- W2912668153 cites W2626711511 @default.
- W2912668153 cites W2668739872 @default.
- W2912668153 cites W2747459086 @default.
- W2912668153 cites W2753528593 @default.
- W2912668153 cites W2759511880 @default.
- W2912668153 cites W2776220900 @default.
- W2912668153 cites W2911964244 @default.
- W2912668153 cites W4206310440 @default.
- W2912668153 cites W2597042466 @default.
- W2912668153 doi "https://doi.org/10.1016/j.bbe.2019.01.003" @default.
- W2912668153 hasPublicationYear "2019" @default.
- W2912668153 type Work @default.
- W2912668153 sameAs 2912668153 @default.
- W2912668153 citedByCount "8" @default.
- W2912668153 countsByYear W29126681532019 @default.
- W2912668153 countsByYear W29126681532020 @default.
- W2912668153 countsByYear W29126681532021 @default.
- W2912668153 countsByYear W29126681532022 @default.
- W2912668153 countsByYear W29126681532023 @default.
- W2912668153 crossrefType "journal-article" @default.
- W2912668153 hasAuthorship W2912668153A5000707727 @default.
- W2912668153 hasAuthorship W2912668153A5013880320 @default.
- W2912668153 hasAuthorship W2912668153A5017149028 @default.
- W2912668153 hasAuthorship W2912668153A5059420585 @default.
- W2912668153 hasConcept C124504099 @default.
- W2912668153 hasConcept C126838900 @default.
- W2912668153 hasConcept C138885662 @default.
- W2912668153 hasConcept C143409427 @default.
- W2912668153 hasConcept C153180895 @default.
- W2912668153 hasConcept C154945302 @default.
- W2912668153 hasConcept C163892561 @default.
- W2912668153 hasConcept C164705383 @default.
- W2912668153 hasConcept C169258074 @default.
- W2912668153 hasConcept C2776401178 @default.
- W2912668153 hasConcept C3020199598 @default.
- W2912668153 hasConcept C41008148 @default.
- W2912668153 hasConcept C41895202 @default.
- W2912668153 hasConcept C52622490 @default.
- W2912668153 hasConcept C541997718 @default.
- W2912668153 hasConcept C71924100 @default.
- W2912668153 hasConcept C73555534 @default.
- W2912668153 hasConcept C89600930 @default.
- W2912668153 hasConcept C95623464 @default.
- W2912668153 hasConcept C97931131 @default.
- W2912668153 hasConceptScore W2912668153C124504099 @default.
- W2912668153 hasConceptScore W2912668153C126838900 @default.
- W2912668153 hasConceptScore W2912668153C138885662 @default.
- W2912668153 hasConceptScore W2912668153C143409427 @default.
- W2912668153 hasConceptScore W2912668153C153180895 @default.
- W2912668153 hasConceptScore W2912668153C154945302 @default.
- W2912668153 hasConceptScore W2912668153C163892561 @default.
- W2912668153 hasConceptScore W2912668153C164705383 @default.
- W2912668153 hasConceptScore W2912668153C169258074 @default.
- W2912668153 hasConceptScore W2912668153C2776401178 @default.
- W2912668153 hasConceptScore W2912668153C3020199598 @default.
- W2912668153 hasConceptScore W2912668153C41008148 @default.
- W2912668153 hasConceptScore W2912668153C41895202 @default.
- W2912668153 hasConceptScore W2912668153C52622490 @default.
- W2912668153 hasConceptScore W2912668153C541997718 @default.
- W2912668153 hasConceptScore W2912668153C71924100 @default.
- W2912668153 hasConceptScore W2912668153C73555534 @default.
- W2912668153 hasConceptScore W2912668153C89600930 @default.
- W2912668153 hasConceptScore W2912668153C95623464 @default.