Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912669486> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W2912669486 abstract "Awareness on physical fatigue is important for prevention of injury caused by over-exercise while performing an exercise. Therefore, this study aims to predict an exhaustion threshold quantitatively based on ECG features using the artificial neural network. All five males of volunteered were participated to obtain the exhaustion threshold from exercise-induced fatigue protocol. By using the electrocardiogram (ECG) device, the electrodes were attached on the thorax to comply with the Einthoven’s Law. Also, it equipped with Bluetooth for the data transmission for the real-time monitoring. Then, the ECG raw signal was filtered to eliminate the noise by using the 4th order Butterworth filter in low-pass frequency. Statistic feature extraction in each window provides specific information for the input data while the Borg scale and time to exhaustion are target data. Subject 2 and 3 contributed the highest time of exhaustion (TTE) with minimum HR reserve and categorised as normal BMI. Only 56 input data were considered as optimum parameters for the fastest time and regression value t=0.7313s and R=0.99668 respectively. The regression value for both outputs Borg's scale and TTE present the significant correlations by produced R=0.99095 and R=0.99541. The highest threshold prediction contributed up to 89.3%, to the good mathematical model developed. This method is promising for the prediction of exhaustion threshold in order to replace the qualitative with the quantitative measurement. Therefore, it is beneficial for the athlete as well as coach to monitor exhaustion and manage it properly from severe injury happen." @default.
- W2912669486 created "2019-02-21" @default.
- W2912669486 creator A5018543583 @default.
- W2912669486 creator A5045577347 @default.
- W2912669486 creator A5081839612 @default.
- W2912669486 date "2018-12-01" @default.
- W2912669486 modified "2023-09-27" @default.
- W2912669486 title "Prediction of Exhaustion Threshold Based on ECG Features Using The Artificial Neural Network Model" @default.
- W2912669486 cites W1972684191 @default.
- W2912669486 cites W2003226043 @default.
- W2912669486 cites W2016267422 @default.
- W2912669486 cites W2019859431 @default.
- W2912669486 cites W2068282081 @default.
- W2912669486 cites W2084867179 @default.
- W2912669486 cites W2120618124 @default.
- W2912669486 cites W2165896060 @default.
- W2912669486 cites W2464717612 @default.
- W2912669486 cites W2517389691 @default.
- W2912669486 cites W2786468997 @default.
- W2912669486 cites W2791563689 @default.
- W2912669486 cites W656592711 @default.
- W2912669486 cites W749348364 @default.
- W2912669486 cites W2159930232 @default.
- W2912669486 doi "https://doi.org/10.1109/iecbes.2018.8626605" @default.
- W2912669486 hasPublicationYear "2018" @default.
- W2912669486 type Work @default.
- W2912669486 sameAs 2912669486 @default.
- W2912669486 citedByCount "2" @default.
- W2912669486 countsByYear W29126694862020 @default.
- W2912669486 countsByYear W29126694862022 @default.
- W2912669486 crossrefType "proceedings-article" @default.
- W2912669486 hasAuthorship W2912669486A5018543583 @default.
- W2912669486 hasAuthorship W2912669486A5045577347 @default.
- W2912669486 hasAuthorship W2912669486A5081839612 @default.
- W2912669486 hasConcept C105795698 @default.
- W2912669486 hasConcept C115961682 @default.
- W2912669486 hasConcept C119857082 @default.
- W2912669486 hasConcept C154945302 @default.
- W2912669486 hasConcept C33923547 @default.
- W2912669486 hasConcept C41008148 @default.
- W2912669486 hasConcept C48921125 @default.
- W2912669486 hasConcept C50644808 @default.
- W2912669486 hasConcept C64413873 @default.
- W2912669486 hasConcept C71924100 @default.
- W2912669486 hasConcept C89128539 @default.
- W2912669486 hasConcept C99454951 @default.
- W2912669486 hasConcept C99498987 @default.
- W2912669486 hasConceptScore W2912669486C105795698 @default.
- W2912669486 hasConceptScore W2912669486C115961682 @default.
- W2912669486 hasConceptScore W2912669486C119857082 @default.
- W2912669486 hasConceptScore W2912669486C154945302 @default.
- W2912669486 hasConceptScore W2912669486C33923547 @default.
- W2912669486 hasConceptScore W2912669486C41008148 @default.
- W2912669486 hasConceptScore W2912669486C48921125 @default.
- W2912669486 hasConceptScore W2912669486C50644808 @default.
- W2912669486 hasConceptScore W2912669486C64413873 @default.
- W2912669486 hasConceptScore W2912669486C71924100 @default.
- W2912669486 hasConceptScore W2912669486C89128539 @default.
- W2912669486 hasConceptScore W2912669486C99454951 @default.
- W2912669486 hasConceptScore W2912669486C99498987 @default.
- W2912669486 hasLocation W29126694861 @default.
- W2912669486 hasOpenAccess W2912669486 @default.
- W2912669486 hasPrimaryLocation W29126694861 @default.
- W2912669486 hasRelatedWork W11765363 @default.
- W2912669486 hasRelatedWork W2084779923 @default.
- W2912669486 hasRelatedWork W2130200978 @default.
- W2912669486 hasRelatedWork W2130773802 @default.
- W2912669486 hasRelatedWork W2140225375 @default.
- W2912669486 hasRelatedWork W2899741934 @default.
- W2912669486 hasRelatedWork W2905052559 @default.
- W2912669486 hasRelatedWork W3212578714 @default.
- W2912669486 hasRelatedWork W1532666549 @default.
- W2912669486 hasRelatedWork W1629725936 @default.
- W2912669486 isParatext "false" @default.
- W2912669486 isRetracted "false" @default.
- W2912669486 magId "2912669486" @default.
- W2912669486 workType "article" @default.