Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912672202> ?p ?o ?g. }
- W2912672202 abstract "ABSTRACT Motivation Proper prioritization of candidate genes is essential to the genome-based diagnostics of a range of genetic diseases. However, it is a highly challenging task involving limited and noisy knowledge of genes, diseases and their associations. While a number of computational methods have been developed for the disease gene prioritization task, their performance is largely limited by manually crafted features, network topology, or pre-defined rules of data fusion. Results Here, we propose a novel graph convolutional network-based disease gene prioritization method, PGCN, through the systematic embedding of the heterogeneous network made by genes and diseases, as well as their individual features. The embedding learning model and the association prediction model are trained together in an end-to-end manner. We compared PGCN with five state-of-the-art methods on the Online Mendelian Inheritance in Man (OMIM) dataset for tasks to recover missing associations and discover associations between novel genes and diseases. Results show significant improvements of PGCN over the existing methods. We further demonstrate that our embedding has biological meaning and can capture functional groups of genes. Availability The main program and the data are available at https://github.com/lykaust15/Disease_gene_prioritization_GCN ." @default.
- W2912672202 created "2019-02-21" @default.
- W2912672202 creator A5005997934 @default.
- W2912672202 creator A5009607229 @default.
- W2912672202 creator A5030589527 @default.
- W2912672202 creator A5062339339 @default.
- W2912672202 creator A5067923548 @default.
- W2912672202 date "2019-01-28" @default.
- W2912672202 modified "2023-10-11" @default.
- W2912672202 title "PGCN: Disease gene prioritization by disease and gene embedding through graph convolutional neural networks" @default.
- W2912672202 cites W1521652389 @default.
- W2912672202 cites W1647856483 @default.
- W2912672202 cites W1764005853 @default.
- W2912672202 cites W1982276721 @default.
- W2912672202 cites W1999896552 @default.
- W2912672202 cites W2008715775 @default.
- W2912672202 cites W2018570668 @default.
- W2912672202 cites W2032755318 @default.
- W2912672202 cites W2036568936 @default.
- W2912672202 cites W2037426808 @default.
- W2912672202 cites W2042110087 @default.
- W2912672202 cites W2054108659 @default.
- W2912672202 cites W2060300932 @default.
- W2912672202 cites W2064330140 @default.
- W2912672202 cites W2086540224 @default.
- W2912672202 cites W2087409288 @default.
- W2912672202 cites W2090247362 @default.
- W2912672202 cites W2097532544 @default.
- W2912672202 cites W2100857474 @default.
- W2912672202 cites W2103478816 @default.
- W2912672202 cites W2106477781 @default.
- W2912672202 cites W2109555487 @default.
- W2912672202 cites W2110684048 @default.
- W2912672202 cites W2112014854 @default.
- W2912672202 cites W2117024463 @default.
- W2912672202 cites W2119412782 @default.
- W2912672202 cites W2123688186 @default.
- W2912672202 cites W2124204060 @default.
- W2912672202 cites W2124649657 @default.
- W2912672202 cites W2125118217 @default.
- W2912672202 cites W2128049108 @default.
- W2912672202 cites W2131674595 @default.
- W2912672202 cites W2146029632 @default.
- W2912672202 cites W2154654747 @default.
- W2912672202 cites W2158927033 @default.
- W2912672202 cites W2160198684 @default.
- W2912672202 cites W2169374864 @default.
- W2912672202 cites W2169567789 @default.
- W2912672202 cites W2210004111 @default.
- W2912672202 cites W2270303516 @default.
- W2912672202 cites W2324480838 @default.
- W2912672202 cites W2343509590 @default.
- W2912672202 cites W2429850869 @default.
- W2912672202 cites W2725551975 @default.
- W2912672202 cites W2739636023 @default.
- W2912672202 cites W2786016794 @default.
- W2912672202 cites W2786757148 @default.
- W2912672202 cites W2789725201 @default.
- W2912672202 cites W2808373515 @default.
- W2912672202 cites W2848983148 @default.
- W2912672202 cites W2896002881 @default.
- W2912672202 cites W2901332105 @default.
- W2912672202 cites W2908351833 @default.
- W2912672202 cites W2908663744 @default.
- W2912672202 cites W2962969117 @default.
- W2912672202 cites W4294216483 @default.
- W2912672202 doi "https://doi.org/10.1101/532226" @default.
- W2912672202 hasPublicationYear "2019" @default.
- W2912672202 type Work @default.
- W2912672202 sameAs 2912672202 @default.
- W2912672202 citedByCount "21" @default.
- W2912672202 countsByYear W29126722022019 @default.
- W2912672202 countsByYear W29126722022020 @default.
- W2912672202 countsByYear W29126722022021 @default.
- W2912672202 countsByYear W29126722022022 @default.
- W2912672202 countsByYear W29126722022023 @default.
- W2912672202 crossrefType "posted-content" @default.
- W2912672202 hasAuthorship W2912672202A5005997934 @default.
- W2912672202 hasAuthorship W2912672202A5009607229 @default.
- W2912672202 hasAuthorship W2912672202A5030589527 @default.
- W2912672202 hasAuthorship W2912672202A5062339339 @default.
- W2912672202 hasAuthorship W2912672202A5067923548 @default.
- W2912672202 hasBestOaLocation W29126722021 @default.
- W2912672202 hasConcept C104317684 @default.
- W2912672202 hasConcept C119857082 @default.
- W2912672202 hasConcept C127716648 @default.
- W2912672202 hasConcept C132525143 @default.
- W2912672202 hasConcept C154945302 @default.
- W2912672202 hasConcept C162324750 @default.
- W2912672202 hasConcept C165696696 @default.
- W2912672202 hasConcept C191791410 @default.
- W2912672202 hasConcept C201797286 @default.
- W2912672202 hasConcept C2777615720 @default.
- W2912672202 hasConcept C38652104 @default.
- W2912672202 hasConcept C41008148 @default.
- W2912672202 hasConcept C41608201 @default.
- W2912672202 hasConcept C539667460 @default.
- W2912672202 hasConcept C54355233 @default.
- W2912672202 hasConcept C60644358 @default.
- W2912672202 hasConcept C70721500 @default.