Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912673483> ?p ?o ?g. }
- W2912673483 abstract "In the field of reinforcement learning, robot task learning in a specific environment with a Markov decision process backdrop has seen much success. But, extending these results to learning a task for an environment domain has not been as fruitful, even for advanced methodologies such as relational reinforcement learning. In our research into robot learning in environment domains, we utilize a form of deictic representation for the robot’s description of the task environment. However, the non-Markovian nature of the deictic representation leads to perceptual aliasing and conflicting actions, invalidating standard reinforcement learning algorithms. To circumvent this difficulty, several past research studies have modified and extended the Q-learning algorithm to the deictic representation case with mixed results. Taking a different tact, we introduce a learning algorithm which searches deictic policy space directly, abandoning the indirect value based methods. We apply the policy learning algorithm to several different tasks in environment domains. The results compare favorably with value based learners and existing literature results." @default.
- W2912673483 created "2019-02-21" @default.
- W2912673483 creator A5087052990 @default.
- W2912673483 date "2022-06-10" @default.
- W2912673483 modified "2023-10-06" @default.
- W2912673483 title "Reinforcement Learning in Robotic Task Domains with Deictic Descriptor Representation" @default.
- W2912673483 cites W107583932 @default.
- W2912673483 cites W1501627097 @default.
- W2912673483 cites W1515851193 @default.
- W2912673483 cites W1533597678 @default.
- W2912673483 cites W1541084404 @default.
- W2912673483 cites W1545378070 @default.
- W2912673483 cites W1555801537 @default.
- W2912673483 cites W1564393562 @default.
- W2912673483 cites W1570690983 @default.
- W2912673483 cites W1574001572 @default.
- W2912673483 cites W1578521162 @default.
- W2912673483 cites W1582385471 @default.
- W2912673483 cites W1583380718 @default.
- W2912673483 cites W158722652 @default.
- W2912673483 cites W1593772383 @default.
- W2912673483 cites W1612195517 @default.
- W2912673483 cites W199176224 @default.
- W2912673483 cites W2048984163 @default.
- W2912673483 cites W2082973084 @default.
- W2912673483 cites W2097381042 @default.
- W2912673483 cites W2097498341 @default.
- W2912673483 cites W2103614073 @default.
- W2912673483 cites W2109722166 @default.
- W2912673483 cites W2109910161 @default.
- W2912673483 cites W2123742287 @default.
- W2912673483 cites W2125922627 @default.
- W2912673483 cites W2134100786 @default.
- W2912673483 cites W2141559023 @default.
- W2912673483 cites W2142883395 @default.
- W2912673483 cites W2148411640 @default.
- W2912673483 cites W2150821861 @default.
- W2912673483 cites W2154441654 @default.
- W2912673483 cites W2156493855 @default.
- W2912673483 cites W2161397207 @default.
- W2912673483 cites W2167945827 @default.
- W2912673483 cites W2168359464 @default.
- W2912673483 cites W2169977622 @default.
- W2912673483 cites W2320648065 @default.
- W2912673483 cites W2341171179 @default.
- W2912673483 cites W286185234 @default.
- W2912673483 cites W2952448454 @default.
- W2912673483 cites W2964262254 @default.
- W2912673483 cites W3015571647 @default.
- W2912673483 cites W30507863 @default.
- W2912673483 cites W46258415 @default.
- W2912673483 cites W98006832 @default.
- W2912673483 cites W2145742043 @default.
- W2912673483 doi "https://doi.org/10.31390/gradschool_dissertations.4738" @default.
- W2912673483 hasPublicationYear "2022" @default.
- W2912673483 type Work @default.
- W2912673483 sameAs 2912673483 @default.
- W2912673483 citedByCount "0" @default.
- W2912673483 crossrefType "dissertation" @default.
- W2912673483 hasAuthorship W2912673483A5087052990 @default.
- W2912673483 hasBestOaLocation W29126734831 @default.
- W2912673483 hasConcept C105795698 @default.
- W2912673483 hasConcept C106189395 @default.
- W2912673483 hasConcept C119857082 @default.
- W2912673483 hasConcept C127413603 @default.
- W2912673483 hasConcept C13077596 @default.
- W2912673483 hasConcept C138885662 @default.
- W2912673483 hasConcept C154945302 @default.
- W2912673483 hasConcept C159886148 @default.
- W2912673483 hasConcept C17744445 @default.
- W2912673483 hasConcept C199539241 @default.
- W2912673483 hasConcept C201995342 @default.
- W2912673483 hasConcept C2776359362 @default.
- W2912673483 hasConcept C2780451532 @default.
- W2912673483 hasConcept C33923547 @default.
- W2912673483 hasConcept C41008148 @default.
- W2912673483 hasConcept C41895202 @default.
- W2912673483 hasConcept C94625758 @default.
- W2912673483 hasConcept C97541855 @default.
- W2912673483 hasConceptScore W2912673483C105795698 @default.
- W2912673483 hasConceptScore W2912673483C106189395 @default.
- W2912673483 hasConceptScore W2912673483C119857082 @default.
- W2912673483 hasConceptScore W2912673483C127413603 @default.
- W2912673483 hasConceptScore W2912673483C13077596 @default.
- W2912673483 hasConceptScore W2912673483C138885662 @default.
- W2912673483 hasConceptScore W2912673483C154945302 @default.
- W2912673483 hasConceptScore W2912673483C159886148 @default.
- W2912673483 hasConceptScore W2912673483C17744445 @default.
- W2912673483 hasConceptScore W2912673483C199539241 @default.
- W2912673483 hasConceptScore W2912673483C201995342 @default.
- W2912673483 hasConceptScore W2912673483C2776359362 @default.
- W2912673483 hasConceptScore W2912673483C2780451532 @default.
- W2912673483 hasConceptScore W2912673483C33923547 @default.
- W2912673483 hasConceptScore W2912673483C41008148 @default.
- W2912673483 hasConceptScore W2912673483C41895202 @default.
- W2912673483 hasConceptScore W2912673483C94625758 @default.
- W2912673483 hasConceptScore W2912673483C97541855 @default.
- W2912673483 hasLocation W29126734831 @default.
- W2912673483 hasOpenAccess W2912673483 @default.
- W2912673483 hasPrimaryLocation W29126734831 @default.