Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912681221> ?p ?o ?g. }
- W2912681221 endingPage "4201" @default.
- W2912681221 startingPage "4192" @default.
- W2912681221 abstract "This paper proposes a new coal quality exploration method that detects coal quality in coal mining areas and explores and monitors the distribution and change of coal through remote sensing images. First, we collected a large number of coal and noncoal samples such as sandstones, shales, and coal gangues. Second, we measured the actual spectral data of these samples using a spectrometer. For coal mines, we used the chemical analysis method to quantify coal's fixed carbon and categorize the coal mines into three types based on the fixed carbon content present in coal. Third, we collected satellite remote sensing images of coal mining areas and established spectral data relations between the measured spectral data of the samples and the remote sensing images. Fourth, we proposed an incremental multilayer learning machine algorithm and used the algorithm combined with spectral data to build a coal quality classification model to identify coal quality in remote sensing images. Finally, the model accurately described the distribution map of coal quality. Compared with traditional coal exploration methods, this method has the advantages of high speed, high accuracy, and low price." @default.
- W2912681221 created "2019-02-21" @default.
- W2912681221 creator A5015436407 @default.
- W2912681221 creator A5028079757 @default.
- W2912681221 creator A5058393974 @default.
- W2912681221 creator A5062432378 @default.
- W2912681221 creator A5068871983 @default.
- W2912681221 creator A5072522485 @default.
- W2912681221 date "2019-07-01" @default.
- W2912681221 modified "2023-10-14" @default.
- W2912681221 title "Coal Quality Exploration Technology Based on an Incremental Multilayer Extreme Learning Machine and Remote Sensing Images" @default.
- W2912681221 cites W1778774367 @default.
- W2912681221 cites W1973361983 @default.
- W2912681221 cites W1989948820 @default.
- W2912681221 cites W2019607443 @default.
- W2912681221 cites W2072337151 @default.
- W2912681221 cites W2077560601 @default.
- W2912681221 cites W2094625537 @default.
- W2912681221 cites W2111072639 @default.
- W2912681221 cites W2200393290 @default.
- W2912681221 cites W2212636544 @default.
- W2912681221 cites W2261059368 @default.
- W2912681221 cites W2301541953 @default.
- W2912681221 cites W2312628557 @default.
- W2912681221 cites W2324071464 @default.
- W2912681221 cites W2338773260 @default.
- W2912681221 cites W2567582497 @default.
- W2912681221 cites W2574689392 @default.
- W2912681221 cites W2592311268 @default.
- W2912681221 cites W2620339938 @default.
- W2912681221 cites W2620858446 @default.
- W2912681221 cites W2743642947 @default.
- W2912681221 cites W2757242159 @default.
- W2912681221 cites W2759520926 @default.
- W2912681221 cites W2790275230 @default.
- W2912681221 cites W2791363971 @default.
- W2912681221 cites W2792332881 @default.
- W2912681221 cites W2792931904 @default.
- W2912681221 cites W2795547044 @default.
- W2912681221 cites W2804902458 @default.
- W2912681221 cites W2884829521 @default.
- W2912681221 cites W2890022946 @default.
- W2912681221 cites W2911964244 @default.
- W2912681221 cites W2921833330 @default.
- W2912681221 cites W3100245404 @default.
- W2912681221 cites W4239510810 @default.
- W2912681221 doi "https://doi.org/10.1109/tgrs.2018.2890040" @default.
- W2912681221 hasPublicationYear "2019" @default.
- W2912681221 type Work @default.
- W2912681221 sameAs 2912681221 @default.
- W2912681221 citedByCount "18" @default.
- W2912681221 countsByYear W29126812212019 @default.
- W2912681221 countsByYear W29126812212020 @default.
- W2912681221 countsByYear W29126812212021 @default.
- W2912681221 countsByYear W29126812212022 @default.
- W2912681221 countsByYear W29126812212023 @default.
- W2912681221 crossrefType "journal-article" @default.
- W2912681221 hasAuthorship W2912681221A5015436407 @default.
- W2912681221 hasAuthorship W2912681221A5028079757 @default.
- W2912681221 hasAuthorship W2912681221A5058393974 @default.
- W2912681221 hasAuthorship W2912681221A5062432378 @default.
- W2912681221 hasAuthorship W2912681221A5068871983 @default.
- W2912681221 hasAuthorship W2912681221A5072522485 @default.
- W2912681221 hasConcept C108615695 @default.
- W2912681221 hasConcept C111472728 @default.
- W2912681221 hasConcept C127313418 @default.
- W2912681221 hasConcept C127413603 @default.
- W2912681221 hasConcept C138885662 @default.
- W2912681221 hasConcept C154945302 @default.
- W2912681221 hasConcept C16674752 @default.
- W2912681221 hasConcept C2779530757 @default.
- W2912681221 hasConcept C39432304 @default.
- W2912681221 hasConcept C41008148 @default.
- W2912681221 hasConcept C518851703 @default.
- W2912681221 hasConcept C548081761 @default.
- W2912681221 hasConcept C62649853 @default.
- W2912681221 hasConceptScore W2912681221C108615695 @default.
- W2912681221 hasConceptScore W2912681221C111472728 @default.
- W2912681221 hasConceptScore W2912681221C127313418 @default.
- W2912681221 hasConceptScore W2912681221C127413603 @default.
- W2912681221 hasConceptScore W2912681221C138885662 @default.
- W2912681221 hasConceptScore W2912681221C154945302 @default.
- W2912681221 hasConceptScore W2912681221C16674752 @default.
- W2912681221 hasConceptScore W2912681221C2779530757 @default.
- W2912681221 hasConceptScore W2912681221C39432304 @default.
- W2912681221 hasConceptScore W2912681221C41008148 @default.
- W2912681221 hasConceptScore W2912681221C518851703 @default.
- W2912681221 hasConceptScore W2912681221C548081761 @default.
- W2912681221 hasConceptScore W2912681221C62649853 @default.
- W2912681221 hasFunder F4320321001 @default.
- W2912681221 hasIssue "7" @default.
- W2912681221 hasLocation W29126812211 @default.
- W2912681221 hasOpenAccess W2912681221 @default.
- W2912681221 hasPrimaryLocation W29126812211 @default.
- W2912681221 hasRelatedWork W1235466188 @default.
- W2912681221 hasRelatedWork W2349934926 @default.
- W2912681221 hasRelatedWork W2356133300 @default.
- W2912681221 hasRelatedWork W2356245922 @default.