Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912682610> ?p ?o ?g. }
- W2912682610 endingPage "50" @default.
- W2912682610 startingPage "36" @default.
- W2912682610 abstract "Abstract We describe the development of tools to exploit the enormous resource of street-level imagery in Google Street View to characterize food cultivation practices along roadside transects at very high spatial resolution as a potential complement to traditional remote sensing approaches. We report on two software tools for crop identification using a deep convolutional neural network (CNN) applied to Google Street View imagery. The first, a multi-class classifier distinguishes seven regionally common cultivated plant species, as well as uncultivated vegetation, built environment, and water along the roads. The second, a prototype specialist detector, recognizes the presence of a single plant species: in our case, banana. These two classification tools were tested along roadside transects in two areas of Thailand, a country where there is good Google Street View coverage. On the entire test set, the overall accuracy of the multi-class classifier was 83.3%. For several classes, (banana, built, cassava, maize, rice, and sugarcane), the producer's accuracy was over 90%, meaning that the classifier was infrequently making omission errors. This performance on roadside transects is comparable with that of some remote-sensing classifiers, yet ours does not require any additional site-visits for ground-truthing. Moreover, the overall accuracy of the classifier on the 40% of images it is most sure about is excellent: 99.0%. For the prototype specialist detector, the area under the ROC curve was 0.9905, indicating excellent performance in detecting the presence of banana plants. While initially tested over the road network in a small area, this technique could readily be deployed on a regional or even national scale to supplement remote sensing data and yield a fine-grained analysis of food cultivation activities along roadside transects." @default.
- W2912682610 created "2019-02-21" @default.
- W2912682610 creator A5027522379 @default.
- W2912682610 creator A5052932091 @default.
- W2912682610 creator A5057786524 @default.
- W2912682610 date "2019-03-01" @default.
- W2912682610 modified "2023-10-01" @default.
- W2912682610 title "Characterization of food cultivation along roadside transects with Google Street View imagery and deep learning" @default.
- W2912682610 cites W1496894866 @default.
- W2912682610 cites W1697020485 @default.
- W2912682610 cites W1963809378 @default.
- W2912682610 cites W1964906997 @default.
- W2912682610 cites W1971352677 @default.
- W2912682610 cites W1973169464 @default.
- W2912682610 cites W1973715452 @default.
- W2912682610 cites W1973788747 @default.
- W2912682610 cites W1975383315 @default.
- W2912682610 cites W1976129996 @default.
- W2912682610 cites W1976977979 @default.
- W2912682610 cites W1980180011 @default.
- W2912682610 cites W1990748933 @default.
- W2912682610 cites W1993585210 @default.
- W2912682610 cites W1993899615 @default.
- W2912682610 cites W1997772817 @default.
- W2912682610 cites W2004974688 @default.
- W2912682610 cites W2007242015 @default.
- W2912682610 cites W2011973778 @default.
- W2912682610 cites W2023696667 @default.
- W2912682610 cites W2023821175 @default.
- W2912682610 cites W2026664397 @default.
- W2912682610 cites W2027938621 @default.
- W2912682610 cites W2029086232 @default.
- W2912682610 cites W2031119047 @default.
- W2912682610 cites W2034794296 @default.
- W2912682610 cites W2037186755 @default.
- W2912682610 cites W2043376927 @default.
- W2912682610 cites W2059290539 @default.
- W2912682610 cites W2063339119 @default.
- W2912682610 cites W2064245748 @default.
- W2912682610 cites W2071652822 @default.
- W2912682610 cites W2077524583 @default.
- W2912682610 cites W2089040011 @default.
- W2912682610 cites W2090743741 @default.
- W2912682610 cites W2109428973 @default.
- W2912682610 cites W2116973452 @default.
- W2912682610 cites W2117539524 @default.
- W2912682610 cites W2123341809 @default.
- W2912682610 cites W2155653793 @default.
- W2912682610 cites W2158698691 @default.
- W2912682610 cites W2171010169 @default.
- W2912682610 cites W2182749117 @default.
- W2912682610 cites W2183341477 @default.
- W2912682610 cites W2204038779 @default.
- W2912682610 cites W2205610530 @default.
- W2912682610 cites W2253590344 @default.
- W2912682610 cites W2326278976 @default.
- W2912682610 cites W2346867319 @default.
- W2912682610 cites W2347079910 @default.
- W2912682610 cites W2393903249 @default.
- W2912682610 cites W2412782625 @default.
- W2912682610 cites W2412887352 @default.
- W2912682610 cites W2470803522 @default.
- W2912682610 cites W2496036993 @default.
- W2912682610 cites W2496925721 @default.
- W2912682610 cites W2501700740 @default.
- W2912682610 cites W2519482191 @default.
- W2912682610 cites W2561572938 @default.
- W2912682610 cites W2569479441 @default.
- W2912682610 cites W2579348194 @default.
- W2912682610 cites W2589112598 @default.
- W2912682610 cites W2598945388 @default.
- W2912682610 cites W2609921688 @default.
- W2912682610 cites W2610605913 @default.
- W2912682610 cites W2612844455 @default.
- W2912682610 cites W2625680238 @default.
- W2912682610 cites W2732873697 @default.
- W2912682610 cites W2741922878 @default.
- W2912682610 cites W2762186317 @default.
- W2912682610 cites W2770820547 @default.
- W2912682610 cites W2790979755 @default.
- W2912682610 cites W2801303530 @default.
- W2912682610 cites W2919115771 @default.
- W2912682610 cites W2963351448 @default.
- W2912682610 cites W2964312704 @default.
- W2912682610 cites W3100344990 @default.
- W2912682610 cites W3103856189 @default.
- W2912682610 cites W2090997235 @default.
- W2912682610 doi "https://doi.org/10.1016/j.compag.2019.01.014" @default.
- W2912682610 hasPublicationYear "2019" @default.
- W2912682610 type Work @default.
- W2912682610 sameAs 2912682610 @default.
- W2912682610 citedByCount "21" @default.
- W2912682610 countsByYear W29126826102019 @default.
- W2912682610 countsByYear W29126826102020 @default.
- W2912682610 countsByYear W29126826102021 @default.
- W2912682610 countsByYear W29126826102022 @default.
- W2912682610 countsByYear W29126826102023 @default.
- W2912682610 crossrefType "journal-article" @default.