Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912682706> ?p ?o ?g. }
- W2912682706 endingPage "183" @default.
- W2912682706 startingPage "129" @default.
- W2912682706 abstract "Spectral clustering refers to a family of well-known unsupervised learning algorithms. Rather than attempting to cluster points in their native domain, one constructs a (usually sparse) similarity graph and computes the principal eigenvectors of its Laplacian. The eigenvectors are then interpreted as transformed points and fed into a k-means clustering algorithm. As a result of this non-linear transformation, it becomes possible to use a simple centroid-based algorithm in order to identify non-convex clusters, something that was otherwise impossible. Unfortunately, what makes spectral clustering so successful is also its Achilles heel: forming a graph and computing its dominant eigenvectors can be computationally prohibitive when dealing with more than a few tens of thousands of points. In this chapter, we review the principal research efforts aiming to reduce this computational cost. We focus on methods that come with a theoretical control on the clustering performance and incorporate some form of sampling in their operation. Such methods abound in the machine learning, numerical linear algebra, and graph signal processing literature and, among others, include Nyström-approximation, landmarks, coarsening, coresets, and compressive spectral clustering. We present the approximation guarantees available for each and discuss practical merits and limitations. Surprisingly, despite the breadth of the literature explored, we conclude that there is still a gap between theory and practice: the most scalable methods are only intuitively motivated or loosely controlled, whereas those that come with end-to-end guarantees rely on strong assumptions or enable a limited gain of computation time." @default.
- W2912682706 created "2019-02-21" @default.
- W2912682706 creator A5018101759 @default.
- W2912682706 creator A5033465803 @default.
- W2912682706 date "2019-10-27" @default.
- W2912682706 modified "2023-10-13" @default.
- W2912682706 title "Approximating Spectral Clustering via Sampling: A Review" @default.
- W2912682706 cites W1485063553 @default.
- W2912682706 cites W1490949485 @default.
- W2912682706 cites W1539831438 @default.
- W2912682706 cites W1560153690 @default.
- W2912682706 cites W1564611420 @default.
- W2912682706 cites W1587744656 @default.
- W2912682706 cites W1937201840 @default.
- W2912682706 cites W1958800402 @default.
- W2912682706 cites W1964510837 @default.
- W2912682706 cites W1967934524 @default.
- W2912682706 cites W1970576574 @default.
- W2912682706 cites W1976257805 @default.
- W2912682706 cites W1979750072 @default.
- W2912682706 cites W1981773323 @default.
- W2912682706 cites W1983193888 @default.
- W2912682706 cites W1988840873 @default.
- W2912682706 cites W1990488619 @default.
- W2912682706 cites W1998325344 @default.
- W2912682706 cites W2002276939 @default.
- W2912682706 cites W2024514015 @default.
- W2912682706 cites W2037757210 @default.
- W2912682706 cites W2039592987 @default.
- W2912682706 cites W2045756072 @default.
- W2912682706 cites W2047281923 @default.
- W2912682706 cites W2051549110 @default.
- W2912682706 cites W2055663168 @default.
- W2912682706 cites W2057463094 @default.
- W2912682706 cites W2057469720 @default.
- W2912682706 cites W2059515884 @default.
- W2912682706 cites W2059971059 @default.
- W2912682706 cites W2069552821 @default.
- W2912682706 cites W2070232376 @default.
- W2912682706 cites W2083359884 @default.
- W2912682706 cites W2086504823 @default.
- W2912682706 cites W2101491865 @default.
- W2912682706 cites W2108399535 @default.
- W2912682706 cites W2110026675 @default.
- W2912682706 cites W2115789358 @default.
- W2912682706 cites W2116810533 @default.
- W2912682706 cites W2117756735 @default.
- W2912682706 cites W2119456804 @default.
- W2912682706 cites W2121947440 @default.
- W2912682706 cites W2123513914 @default.
- W2912682706 cites W2127048411 @default.
- W2912682706 cites W2128873747 @default.
- W2912682706 cites W2129575457 @default.
- W2912682706 cites W2132914434 @default.
- W2912682706 cites W2133157266 @default.
- W2912682706 cites W2133995768 @default.
- W2912682706 cites W2134370969 @default.
- W2912682706 cites W2135957668 @default.
- W2912682706 cites W2138779671 @default.
- W2912682706 cites W2141362318 @default.
- W2912682706 cites W2142838865 @default.
- W2912682706 cites W2145065594 @default.
- W2912682706 cites W2150593711 @default.
- W2912682706 cites W2158933803 @default.
- W2912682706 cites W2161160262 @default.
- W2912682706 cites W2161763921 @default.
- W2912682706 cites W2164853353 @default.
- W2912682706 cites W2179147795 @default.
- W2912682706 cites W2196782699 @default.
- W2912682706 cites W2215668387 @default.
- W2912682706 cites W2305552472 @default.
- W2912682706 cites W2378745074 @default.
- W2912682706 cites W2427881153 @default.
- W2912682706 cites W2495934091 @default.
- W2912682706 cites W2521050763 @default.
- W2912682706 cites W2540307294 @default.
- W2912682706 cites W2555117105 @default.
- W2912682706 cites W2735043652 @default.
- W2912682706 cites W2735209869 @default.
- W2912682706 cites W2741843976 @default.
- W2912682706 cites W2763569390 @default.
- W2912682706 cites W2776050171 @default.
- W2912682706 cites W2776807095 @default.
- W2912682706 cites W2776832309 @default.
- W2912682706 cites W2795091454 @default.
- W2912682706 cites W2803475843 @default.
- W2912682706 cites W2890403598 @default.
- W2912682706 cites W2962777529 @default.
- W2912682706 cites W2962963658 @default.
- W2912682706 cites W2963556049 @default.
- W2912682706 cites W2963773113 @default.
- W2912682706 cites W2964147614 @default.
- W2912682706 cites W3100144903 @default.
- W2912682706 cites W3112410551 @default.
- W2912682706 cites W4230094279 @default.
- W2912682706 cites W4243341520 @default.
- W2912682706 cites W4247692611 @default.
- W2912682706 cites W4248651508 @default.