Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912682969> ?p ?o ?g. }
- W2912682969 abstract "With the rapid development of digital information, the data volume generated by humans and machines is growing exponentially. Along with this trend, machine learning algorithms have been formed and evolved continuously to discover new information and knowledge from different data sources. Learning algorithms using hyperboxes as fundamental representational and building blocks are a branch of machine learning methods. These algorithms have enormous potential for high scalability and online adaptation of predictors built using hyperbox data representations to the dynamically changing environments and streaming data. This paper aims to give a comprehensive survey of literature on hyperbox-based machine learning models. In general, according to the architecture and characteristic features of the resulting models, the existing hyperbox-based learning algorithms may be grouped into three major categories: fuzzy min-max neural networks, hyperbox-based hybrid models, and other algorithms based on hyperbox representations. Within each of these groups, this paper shows a brief description of the structure of models, associated learning algorithms, and an analysis of their advantages and drawbacks. Main applications of these hyperbox-based models to the real-world problems are also described in this paper. Finally, we discuss some open problems and identify potential future research directions in this field." @default.
- W2912682969 created "2019-02-21" @default.
- W2912682969 creator A5035804986 @default.
- W2912682969 creator A5037726482 @default.
- W2912682969 creator A5083181106 @default.
- W2912682969 date "2019-01-31" @default.
- W2912682969 modified "2023-09-27" @default.
- W2912682969 title "Hyperbox based machine learning algorithms: A comprehensive survey." @default.
- W2912682969 cites W1198446981 @default.
- W2912682969 cites W1480067276 @default.
- W2912682969 cites W1516256893 @default.
- W2912682969 cites W1519887009 @default.
- W2912682969 cites W1525317586 @default.
- W2912682969 cites W1527278098 @default.
- W2912682969 cites W1536528357 @default.
- W2912682969 cites W1541438789 @default.
- W2912682969 cites W1544785846 @default.
- W2912682969 cites W156463170 @default.
- W2912682969 cites W1565610649 @default.
- W2912682969 cites W1573676079 @default.
- W2912682969 cites W1592627192 @default.
- W2912682969 cites W1595159159 @default.
- W2912682969 cites W1635518113 @default.
- W2912682969 cites W1682403713 @default.
- W2912682969 cites W1823785159 @default.
- W2912682969 cites W1924476928 @default.
- W2912682969 cites W1965755769 @default.
- W2912682969 cites W1981349659 @default.
- W2912682969 cites W1983339194 @default.
- W2912682969 cites W2010657328 @default.
- W2912682969 cites W2012611887 @default.
- W2912682969 cites W2016883203 @default.
- W2912682969 cites W2023459309 @default.
- W2912682969 cites W2033970061 @default.
- W2912682969 cites W2037539269 @default.
- W2912682969 cites W2038377715 @default.
- W2912682969 cites W2044758663 @default.
- W2912682969 cites W2047619977 @default.
- W2912682969 cites W2060541277 @default.
- W2912682969 cites W2063300059 @default.
- W2912682969 cites W2070751318 @default.
- W2912682969 cites W2073765322 @default.
- W2912682969 cites W2074662725 @default.
- W2912682969 cites W2080104945 @default.
- W2912682969 cites W2083872769 @default.
- W2912682969 cites W2091160132 @default.
- W2912682969 cites W2098261019 @default.
- W2912682969 cites W2100714230 @default.
- W2912682969 cites W2101052319 @default.
- W2912682969 cites W2101228436 @default.
- W2912682969 cites W2103699906 @default.
- W2912682969 cites W2103753221 @default.
- W2912682969 cites W2104129384 @default.
- W2912682969 cites W2113772493 @default.
- W2912682969 cites W2114770214 @default.
- W2912682969 cites W2120063205 @default.
- W2912682969 cites W2121734606 @default.
- W2912682969 cites W2122711951 @default.
- W2912682969 cites W2122736337 @default.
- W2912682969 cites W2123953280 @default.
- W2912682969 cites W2125976472 @default.
- W2912682969 cites W2127436605 @default.
- W2912682969 cites W2127935069 @default.
- W2912682969 cites W2129324580 @default.
- W2912682969 cites W2134526937 @default.
- W2912682969 cites W2136035344 @default.
- W2912682969 cites W2136295042 @default.
- W2912682969 cites W2139619691 @default.
- W2912682969 cites W2147560957 @default.
- W2912682969 cites W2156909104 @default.
- W2912682969 cites W2159771557 @default.
- W2912682969 cites W2166280719 @default.
- W2912682969 cites W2168018275 @default.
- W2912682969 cites W2168603260 @default.
- W2912682969 cites W2202074311 @default.
- W2912682969 cites W2274260930 @default.
- W2912682969 cites W2322990795 @default.
- W2912682969 cites W2343555846 @default.
- W2912682969 cites W23758216 @default.
- W2912682969 cites W2408965753 @default.
- W2912682969 cites W2409948401 @default.
- W2912682969 cites W2513776656 @default.
- W2912682969 cites W2559906442 @default.
- W2912682969 cites W2569556830 @default.
- W2912682969 cites W2582240161 @default.
- W2912682969 cites W2588249445 @default.
- W2912682969 cites W2599906331 @default.
- W2912682969 cites W2624531441 @default.
- W2912682969 cites W2739055454 @default.
- W2912682969 cites W2754582685 @default.
- W2912682969 cites W2767387739 @default.
- W2912682969 cites W2805732031 @default.
- W2912682969 cites W2885901277 @default.
- W2912682969 cites W3085162807 @default.
- W2912682969 cites W3142330316 @default.
- W2912682969 cites W48851684 @default.
- W2912682969 cites W561402864 @default.
- W2912682969 cites W78030844 @default.
- W2912682969 cites W2185981305 @default.
- W2912682969 hasPublicationYear "2019" @default.