Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912690156> ?p ?o ?g. }
- W2912690156 abstract "Climate change is predicted to alter precipitation and drought patterns, which has become a global concern as evidence accumulates that it will affect ecosystem services. Disentangling the ability of soil multifunctionality to withstand this stress (multifunctionality resistance) is a crucial topic for assessing the stability and adaptability of agroecosystems. In this study, we explored the effects of nutrient addition on multifunctionality resistance to drying-wetting cycles and evaluated the importance of microbial functional capacity (characterized by the abundances of genes involved in carbon, nitrogen and phosphorus cycles) for this resistance. The multifunctionality of soils treated with nitrogen (N) and straw showed a higher resistance to drying-wetting cycles than did nonamended soils. Microbial functional capacity displayed a positive linear relationship with multifunctionality resistance. Random forest analysis showed that the abundances of the archeal amoA (associated with nitrification) and nosZ and narG (denitrification) genes were major predictors of multifunctionality resistance in soils without straw addition. In contrast, major predictors of multifunctionality resistance in straw amended soils were the abundances of the GH51 (xylan degradation) and fungcbhIF (cellulose degradation) genes. Structural equation modeling further demonstrated the large direct contribution of carbon (C) and N cycling-related gene abundances to multifunctionality resistance. The modeling further elucidated the positive effects of microbial functional capacity on this resistance, which was mediated potentially by a high soil fungus/bacterium ratio, dissolved organic C content, and low pH. The present work suggests that nutrient management of agroecosystems can buffer negative impacts on ecosystem functioning caused by a climate change-associated increase in drying-wetting cycles via enriching functional capacity of microbial communities.IMPORTANCE Current climate trends indicate an increasing frequency of drying-wetting cycles. Such cycles are severe environmental perturbations and have received an enormous amount of attention. Prediction of ecosystem's stability and adaptability requires a better mechanistic understanding of the responses of microbially mediated C and nutrient cycling processes to external disturbance. Assessment of this stability and adaptability further need to disentangle the relationships between functional capacity of soil microbial communities and the resistance of multifunctionality. Study of the physiological responses and community reorganization of soil microbes in response to stresses requires large investments of resources that vary with the management history of the system. Our study provides evidence that nutrient managements on agroecosystems can be expected to buffer the impacts of progressive climate change on ecosystem functioning by enhancing the functional capacity of soil microbial communities, which can serve as a basis for field studies." @default.
- W2912690156 created "2019-02-21" @default.
- W2912690156 creator A5002446862 @default.
- W2912690156 creator A5008522053 @default.
- W2912690156 creator A5028763351 @default.
- W2912690156 creator A5039288773 @default.
- W2912690156 creator A5041746789 @default.
- W2912690156 creator A5045977430 @default.
- W2912690156 creator A5070616014 @default.
- W2912690156 date "2019-04-15" @default.
- W2912690156 modified "2023-10-18" @default.
- W2912690156 title "Historical Nitrogen Deposition and Straw Addition Facilitate the Resistance of Soil Multifunctionality to Drying-Wetting Cycles" @default.
- W2912690156 cites W1681833908 @default.
- W2912690156 cites W1950497459 @default.
- W2912690156 cites W1964994969 @default.
- W2912690156 cites W1969936606 @default.
- W2912690156 cites W1970845432 @default.
- W2912690156 cites W1979291051 @default.
- W2912690156 cites W1979303090 @default.
- W2912690156 cites W1980992185 @default.
- W2912690156 cites W1986706966 @default.
- W2912690156 cites W1998764507 @default.
- W2912690156 cites W2008626434 @default.
- W2912690156 cites W2025104554 @default.
- W2912690156 cites W2025656342 @default.
- W2912690156 cites W2028088706 @default.
- W2912690156 cites W2030683016 @default.
- W2912690156 cites W2034129543 @default.
- W2912690156 cites W2038417418 @default.
- W2912690156 cites W2040107059 @default.
- W2912690156 cites W2042586438 @default.
- W2912690156 cites W2051159954 @default.
- W2912690156 cites W2051795238 @default.
- W2912690156 cites W2052082268 @default.
- W2912690156 cites W2053543716 @default.
- W2912690156 cites W2058238925 @default.
- W2912690156 cites W2058376609 @default.
- W2912690156 cites W2060564817 @default.
- W2912690156 cites W2068268393 @default.
- W2912690156 cites W2071431036 @default.
- W2912690156 cites W2076878489 @default.
- W2912690156 cites W2078102850 @default.
- W2912690156 cites W2081284397 @default.
- W2912690156 cites W2081810545 @default.
- W2912690156 cites W2084825116 @default.
- W2912690156 cites W2086991633 @default.
- W2912690156 cites W2091031656 @default.
- W2912690156 cites W2092818583 @default.
- W2912690156 cites W2098088204 @default.
- W2912690156 cites W2098096620 @default.
- W2912690156 cites W2098432852 @default.
- W2912690156 cites W2099536218 @default.
- W2912690156 cites W2103140602 @default.
- W2912690156 cites W2103636316 @default.
- W2912690156 cites W2104997363 @default.
- W2912690156 cites W2105872868 @default.
- W2912690156 cites W2111866788 @default.
- W2912690156 cites W2112268922 @default.
- W2912690156 cites W2118166877 @default.
- W2912690156 cites W2118554039 @default.
- W2912690156 cites W2119023470 @default.
- W2912690156 cites W2122308391 @default.
- W2912690156 cites W2126094921 @default.
- W2912690156 cites W2127712195 @default.
- W2912690156 cites W2128341006 @default.
- W2912690156 cites W2134128368 @default.
- W2912690156 cites W2135698100 @default.
- W2912690156 cites W2144189317 @default.
- W2912690156 cites W2146860152 @default.
- W2912690156 cites W2152405429 @default.
- W2912690156 cites W2154218487 @default.
- W2912690156 cites W2160206675 @default.
- W2912690156 cites W2164641345 @default.
- W2912690156 cites W2164888957 @default.
- W2912690156 cites W2169409681 @default.
- W2912690156 cites W2171222148 @default.
- W2912690156 cites W2210828352 @default.
- W2912690156 cites W2253902135 @default.
- W2912690156 cites W2263248977 @default.
- W2912690156 cites W2267609517 @default.
- W2912690156 cites W2300480104 @default.
- W2912690156 cites W2305800867 @default.
- W2912690156 cites W2314329613 @default.
- W2912690156 cites W2321005958 @default.
- W2912690156 cites W2469990185 @default.
- W2912690156 cites W2549517739 @default.
- W2912690156 cites W2573054711 @default.
- W2912690156 cites W2589279280 @default.
- W2912690156 cites W2610063551 @default.
- W2912690156 cites W2740849589 @default.
- W2912690156 cites W2756448447 @default.
- W2912690156 cites W2766171001 @default.
- W2912690156 cites W2775968996 @default.
- W2912690156 cites W2777648105 @default.
- W2912690156 cites W2779127548 @default.
- W2912690156 cites W2793017013 @default.
- W2912690156 cites W2911964244 @default.
- W2912690156 cites W4248834827 @default.
- W2912690156 cites W893496476 @default.
- W2912690156 doi "https://doi.org/10.1128/aem.02251-18" @default.