Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912690489> ?p ?o ?g. }
Showing items 1 to 58 of
58
with 100 items per page.
- W2912690489 endingPage "90" @default.
- W2912690489 startingPage "77" @default.
- W2912690489 abstract "On a finite graph with a chosen partition of the vertex set into interior and boundary vertices, a λ-polyharmonic function is a complex function f on the vertex set which satisfies (λ ⋅ I − P)nf(x) = 0 at each interior vertex. Here, P may be the normalised adjacency matrix, but more generally, we consider the transition matrix P of an arbitrary Markov chain to which the (oriented) graph structure is adapted. After describing these “global” polyharmonic functions, we turn to solving the Riquier problem, where n boundary functions are preassigned and a corresponding “tower” of n successive Dirichlet type problems is solved. The resulting unique solution will be polyharmonic only at those points which have distance at least n from the boundary. Finally, we compare these results with those concerning infinite trees with the end boundary, as studied by Cohen, Colonna, Gowrisankaran and Singman, and more recently, by Picardello and Woess." @default.
- W2912690489 created "2019-02-21" @default.
- W2912690489 creator A5045303057 @default.
- W2912690489 creator A5081673053 @default.
- W2912690489 date "2020-01-01" @default.
- W2912690489 modified "2023-09-24" @default.
- W2912690489 title "Polyharmonic Functions for Finite Graphs and Markov Chains" @default.
- W2912690489 cites W1482194133 @default.
- W2912690489 cites W1608637605 @default.
- W2912690489 cites W1994816081 @default.
- W2912690489 cites W2016806141 @default.
- W2912690489 cites W2034001585 @default.
- W2912690489 cites W2093998115 @default.
- W2912690489 cites W2094842689 @default.
- W2912690489 cites W2138231578 @default.
- W2912690489 cites W2493562759 @default.
- W2912690489 cites W2737763203 @default.
- W2912690489 cites W2963196649 @default.
- W2912690489 cites W4232661759 @default.
- W2912690489 doi "https://doi.org/10.1007/978-3-030-56409-4_4" @default.
- W2912690489 hasPublicationYear "2020" @default.
- W2912690489 type Work @default.
- W2912690489 sameAs 2912690489 @default.
- W2912690489 citedByCount "2" @default.
- W2912690489 countsByYear W29126904892020 @default.
- W2912690489 countsByYear W29126904892022 @default.
- W2912690489 crossrefType "book-chapter" @default.
- W2912690489 hasAuthorship W2912690489A5045303057 @default.
- W2912690489 hasAuthorship W2912690489A5081673053 @default.
- W2912690489 hasBestOaLocation W29126904892 @default.
- W2912690489 hasConcept C105795698 @default.
- W2912690489 hasConcept C33923547 @default.
- W2912690489 hasConcept C41008148 @default.
- W2912690489 hasConcept C98763669 @default.
- W2912690489 hasConceptScore W2912690489C105795698 @default.
- W2912690489 hasConceptScore W2912690489C33923547 @default.
- W2912690489 hasConceptScore W2912690489C41008148 @default.
- W2912690489 hasConceptScore W2912690489C98763669 @default.
- W2912690489 hasLocation W29126904891 @default.
- W2912690489 hasLocation W29126904892 @default.
- W2912690489 hasOpenAccess W2912690489 @default.
- W2912690489 hasPrimaryLocation W29126904891 @default.
- W2912690489 hasRelatedWork W1968867899 @default.
- W2912690489 hasRelatedWork W2043886502 @default.
- W2912690489 hasRelatedWork W2052794679 @default.
- W2912690489 hasRelatedWork W2156668047 @default.
- W2912690489 hasRelatedWork W2325315176 @default.
- W2912690489 hasRelatedWork W2357352049 @default.
- W2912690489 hasRelatedWork W2375314678 @default.
- W2912690489 hasRelatedWork W2389529561 @default.
- W2912690489 hasRelatedWork W2908756996 @default.
- W2912690489 hasRelatedWork W4243745691 @default.
- W2912690489 isParatext "false" @default.
- W2912690489 isRetracted "false" @default.
- W2912690489 magId "2912690489" @default.
- W2912690489 workType "book-chapter" @default.