Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912693033> ?p ?o ?g. }
- W2912693033 abstract "As the foundation of driverless vehicle and intelligent robots, Simultaneous Localization and Mapping(SLAM) has attracted much attention these days. However, non-geometric modules of traditional SLAM algorithms are limited by data association tasks and have become a bottleneck preventing the development of SLAM. To deal with such problems, many researchers seek to Deep Learning for help. But most of these studies are limited to virtual datasets or specific environments, and even sacrifice efficiency for accuracy. Thus, they are not practical enough. We propose DF-SLAM system that uses deep local feature descriptors obtained by the neural network as a substitute for traditional hand-made features. Experimental results demonstrate its improvements in efficiency and stability. DF-SLAM outperforms popular traditional SLAM systems in various scenes, including challenging scenes with intense illumination changes. Its versatility and mobility fit well into the need for exploring new environments. Since we adopt a shallow network to extract local descriptors and remain others the same as original SLAM systems, our DF-SLAM can still run in real-time on GPU." @default.
- W2912693033 created "2019-02-21" @default.
- W2912693033 creator A5023363049 @default.
- W2912693033 creator A5053246660 @default.
- W2912693033 creator A5061924094 @default.
- W2912693033 creator A5075936732 @default.
- W2912693033 creator A5080110668 @default.
- W2912693033 date "2019-01-22" @default.
- W2912693033 modified "2023-10-12" @default.
- W2912693033 title "DF-SLAM: A Deep-Learning Enhanced Visual SLAM System based on Deep Local Features" @default.
- W2912693033 cites W1519967467 @default.
- W2912693033 cites W1608041808 @default.
- W2912693033 cites W1677409904 @default.
- W2912693033 cites W1866250967 @default.
- W2912693033 cites W1869500417 @default.
- W2912693033 cites W1906968832 @default.
- W2912693033 cites W1929856797 @default.
- W2912693033 cites W1955055330 @default.
- W2912693033 cites W1997460147 @default.
- W2912693033 cites W2061669523 @default.
- W2912693033 cites W2088287910 @default.
- W2912693033 cites W2097696373 @default.
- W2912693033 cites W2097934584 @default.
- W2912693033 cites W2117228865 @default.
- W2912693033 cites W2126338221 @default.
- W2912693033 cites W2127589108 @default.
- W2912693033 cites W2143238378 @default.
- W2912693033 cites W2145072179 @default.
- W2912693033 cites W2162731263 @default.
- W2912693033 cites W2200124539 @default.
- W2912693033 cites W2293098187 @default.
- W2912693033 cites W2300779272 @default.
- W2912693033 cites W2320444803 @default.
- W2912693033 cites W2440384215 @default.
- W2912693033 cites W2474281075 @default.
- W2912693033 cites W2523049145 @default.
- W2912693033 cites W2550031512 @default.
- W2912693033 cites W2609883120 @default.
- W2912693033 cites W2612112834 @default.
- W2912693033 cites W2737260104 @default.
- W2912693033 cites W2737630486 @default.
- W2912693033 cites W2739423245 @default.
- W2912693033 cites W2770660904 @default.
- W2912693033 cites W2775929773 @default.
- W2912693033 cites W2777921528 @default.
- W2912693033 cites W2779423082 @default.
- W2912693033 cites W2794086484 @default.
- W2912693033 cites W2830339951 @default.
- W2912693033 cites W2884354140 @default.
- W2912693033 cites W2949634581 @default.
- W2912693033 cites W2951660448 @default.
- W2912693033 cites W2962887844 @default.
- W2912693033 cites W2963157250 @default.
- W2912693033 cites W2963284197 @default.
- W2912693033 cites W2963502507 @default.
- W2912693033 cites W2963537932 @default.
- W2912693033 cites W2963713828 @default.
- W2912693033 cites W2963748588 @default.
- W2912693033 cites W2963906250 @default.
- W2912693033 cites W2964157791 @default.
- W2912693033 cites W2964213180 @default.
- W2912693033 cites W2964314455 @default.
- W2912693033 doi "https://doi.org/10.48550/arxiv.1901.07223" @default.
- W2912693033 hasPublicationYear "2019" @default.
- W2912693033 type Work @default.
- W2912693033 sameAs 2912693033 @default.
- W2912693033 citedByCount "3" @default.
- W2912693033 countsByYear W29126930332020 @default.
- W2912693033 countsByYear W29126930332021 @default.
- W2912693033 crossrefType "posted-content" @default.
- W2912693033 hasAuthorship W2912693033A5023363049 @default.
- W2912693033 hasAuthorship W2912693033A5053246660 @default.
- W2912693033 hasAuthorship W2912693033A5061924094 @default.
- W2912693033 hasAuthorship W2912693033A5075936732 @default.
- W2912693033 hasAuthorship W2912693033A5080110668 @default.
- W2912693033 hasBestOaLocation W29126930331 @default.
- W2912693033 hasConcept C108583219 @default.
- W2912693033 hasConcept C138885662 @default.
- W2912693033 hasConcept C149635348 @default.
- W2912693033 hasConcept C154945302 @default.
- W2912693033 hasConcept C19966478 @default.
- W2912693033 hasConcept C2776401178 @default.
- W2912693033 hasConcept C2780513914 @default.
- W2912693033 hasConcept C2983761899 @default.
- W2912693033 hasConcept C31972630 @default.
- W2912693033 hasConcept C41008148 @default.
- W2912693033 hasConcept C41895202 @default.
- W2912693033 hasConcept C86369673 @default.
- W2912693033 hasConcept C90509273 @default.
- W2912693033 hasConceptScore W2912693033C108583219 @default.
- W2912693033 hasConceptScore W2912693033C138885662 @default.
- W2912693033 hasConceptScore W2912693033C149635348 @default.
- W2912693033 hasConceptScore W2912693033C154945302 @default.
- W2912693033 hasConceptScore W2912693033C19966478 @default.
- W2912693033 hasConceptScore W2912693033C2776401178 @default.
- W2912693033 hasConceptScore W2912693033C2780513914 @default.
- W2912693033 hasConceptScore W2912693033C2983761899 @default.
- W2912693033 hasConceptScore W2912693033C31972630 @default.
- W2912693033 hasConceptScore W2912693033C41008148 @default.
- W2912693033 hasConceptScore W2912693033C41895202 @default.