Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912694252> ?p ?o ?g. }
- W2912694252 endingPage "228" @default.
- W2912694252 startingPage "159" @default.
- W2912694252 abstract "Modern geodesy is undergoing a crucial transformation from the Newtonian paradigm to the Einstein theory of general relativity. This is motivated by advances in developing quantum geodetic sensors including gravimeters and gradientometers, atomic clocks and fiber optics for making ultra-precise measurements of geoid and multipolar structure of Earth’s gravitational field. At the same time, Very Long Baseline Interferometry, Satellite Laser Ranging and Global Navigation Satellite System have achieved an unprecedented level of accuracy in measuring spatial coordinates of reference points of the International Terrestrial Reference Frame and the world height system. The main geodetic reference standard to which gravimetric measurements of Earth’s gravitational field are referred, is called normal gravity field which is represented in the Newtonian gravity by the field of a uniformly rotating, homogeneous Maclaurin ellipsoid having mass and quadrupole momentum equal to the total mass and (tide-free) quadrupole moment of the gravitational field of Earth. The present chapter extends the concept of the normal gravity field from the Newtonian theory to the realm of general relativity. We focus on the calculation of the post-Newtonian approximation of the normal field that would be sufficiently precise for near-future practical applications. We show that in general relativity the level surface of homogeneous and uniformly rotating fluid is no longer described by the Maclaurin ellipsoid in the most general case but represents an axisymmetric spheroid of the fourth order (PN spheroid) with respect to the geodetic Cartesian coordinates. At the same time, admitting post-Newtonian inhomogeneity of mass density in the form of concentric elliptical shells allows us to preserve the level surface of the fluid as an exact ellipsoid of rotation. We parametrize the mass density distribution and the level equipotential surface with two parameters which are intrinsically connected to the existence of the residual gauge freedom, and derive the post-Newtonian normal gravity field of the rotating spheroid both inside and outside of the rotating fluid body. The normal gravity field is given, similarly to the Newtonian gravity, in a closed form by a finite number of the ellipsoidal harmonics. We employ transformation from the ellipsoidal to spherical coordinates to deduce a more conventional post-Newtonian multipolar expansion of scalar and vector gravitational potentials of the rotating spheroid. We compare these expansions with that of the normal gravity field generated by the Kerr metric and demonstrate that the Kerr metric has a fairly limited application in relativistic geodesy as it does not match the normal gravity field of the Maclaurin ellipsoid already in the Newtonian limit. We derive the post-Newtonian generalization of the Somigliana formula for the normal gravity field measured on the surface of the rotating PN spheroid and employed in practical work for measuring the Earth gravitational field anomalies. Finally, we discuss the possible choice of the gauge-dependent parameters of the normal gravity field model for practical applications and compare it with the existing EGM2008 model of gravitational field." @default.
- W2912694252 created "2019-02-21" @default.
- W2912694252 creator A5037835222 @default.
- W2912694252 date "2019-01-01" @default.
- W2912694252 modified "2023-09-27" @default.
- W2912694252 title "Reference-Ellipsoid and Normal Gravity Field in Post-Newtonian Geodesy" @default.
- W2912694252 cites W115050438 @default.
- W2912694252 cites W1508179344 @default.
- W2912694252 cites W1620273746 @default.
- W2912694252 cites W1647275953 @default.
- W2912694252 cites W1656582274 @default.
- W2912694252 cites W1675765571 @default.
- W2912694252 cites W1837181303 @default.
- W2912694252 cites W1904306885 @default.
- W2912694252 cites W1953478438 @default.
- W2912694252 cites W1973630265 @default.
- W2912694252 cites W1979683698 @default.
- W2912694252 cites W1980347029 @default.
- W2912694252 cites W1980733923 @default.
- W2912694252 cites W1981055455 @default.
- W2912694252 cites W1982670261 @default.
- W2912694252 cites W1986625173 @default.
- W2912694252 cites W1988188672 @default.
- W2912694252 cites W1991445280 @default.
- W2912694252 cites W1994506780 @default.
- W2912694252 cites W2000549336 @default.
- W2912694252 cites W2001990784 @default.
- W2912694252 cites W2006502918 @default.
- W2912694252 cites W2010422258 @default.
- W2912694252 cites W2012937906 @default.
- W2912694252 cites W2012960812 @default.
- W2912694252 cites W2013401913 @default.
- W2912694252 cites W2018530086 @default.
- W2912694252 cites W2026273689 @default.
- W2912694252 cites W2027871014 @default.
- W2912694252 cites W2030944231 @default.
- W2912694252 cites W2031671816 @default.
- W2912694252 cites W2032470761 @default.
- W2912694252 cites W2033285048 @default.
- W2912694252 cites W2034662777 @default.
- W2912694252 cites W2050879194 @default.
- W2912694252 cites W2051027545 @default.
- W2912694252 cites W2053987409 @default.
- W2912694252 cites W2054249543 @default.
- W2912694252 cites W2055930775 @default.
- W2912694252 cites W2069651370 @default.
- W2912694252 cites W2079406404 @default.
- W2912694252 cites W2079855137 @default.
- W2912694252 cites W2090717559 @default.
- W2912694252 cites W2091164229 @default.
- W2912694252 cites W2100041209 @default.
- W2912694252 cites W2119254801 @default.
- W2912694252 cites W2141510470 @default.
- W2912694252 cites W2148230621 @default.
- W2912694252 cites W2149716416 @default.
- W2912694252 cites W2153135464 @default.
- W2912694252 cites W2154151126 @default.
- W2912694252 cites W2270641808 @default.
- W2912694252 cites W2318705688 @default.
- W2912694252 cites W2326207347 @default.
- W2912694252 cites W2463092535 @default.
- W2912694252 cites W2492450223 @default.
- W2912694252 cites W2517033990 @default.
- W2912694252 cites W2535498135 @default.
- W2912694252 cites W2569040747 @default.
- W2912694252 cites W2594081635 @default.
- W2912694252 cites W2599639290 @default.
- W2912694252 cites W2621115802 @default.
- W2912694252 cites W3047468762 @default.
- W2912694252 cites W3103984981 @default.
- W2912694252 cites W3104141865 @default.
- W2912694252 cites W3104382708 @default.
- W2912694252 cites W3105550630 @default.
- W2912694252 cites W3135281316 @default.
- W2912694252 cites W3217743179 @default.
- W2912694252 cites W4205483922 @default.
- W2912694252 cites W4206652985 @default.
- W2912694252 cites W4206707890 @default.
- W2912694252 cites W4234985135 @default.
- W2912694252 cites W4243839489 @default.
- W2912694252 doi "https://doi.org/10.1007/978-3-030-11500-5_6" @default.
- W2912694252 hasPublicationYear "2019" @default.
- W2912694252 type Work @default.
- W2912694252 sameAs 2912694252 @default.
- W2912694252 citedByCount "1" @default.
- W2912694252 countsByYear W29126942522021 @default.
- W2912694252 crossrefType "book-chapter" @default.
- W2912694252 hasAuthorship W2912694252A5037835222 @default.
- W2912694252 hasConcept C121332964 @default.
- W2912694252 hasConcept C127313418 @default.
- W2912694252 hasConcept C13280743 @default.
- W2912694252 hasConcept C14257148 @default.
- W2912694252 hasConcept C294558 @default.
- W2912694252 hasConcept C57489055 @default.
- W2912694252 hasConcept C74650414 @default.
- W2912694252 hasConceptScore W2912694252C121332964 @default.
- W2912694252 hasConceptScore W2912694252C127313418 @default.
- W2912694252 hasConceptScore W2912694252C13280743 @default.