Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912704538> ?p ?o ?g. }
- W2912704538 endingPage "399" @default.
- W2912704538 startingPage "390" @default.
- W2912704538 abstract "Abstract The search for appropriate models for predictive analytics is currently a high priority to optimize anaerobic fermentation processes in industrial-scale biogas facilities; operational productivity could be enhanced if project operators used the latest tools in machine learning to inform decision-making. The objective of this study is to enhance biogas production in industrial facilities by designing a graphical user interface to machine learning models capable of predicting biogas output given a set of waste inputs. The methodology involved applying predictive algorithms to daily production data from two major Chinese biogas facilities in order to understand the most important inputs affecting biogas production. The machine learning models used included logistic regression, support vector machine, random forest, extreme gradient boosting, and k-nearest neighbors regression. The models were tuned and cross-validated for optimal accuracy. Our results showed that: (1) the KNN model had the highest model accuracy for the Hainan biogas facility, with an 87% accuracy on the test set; (2) municipal fecal residue, kitchen food waste, percolate, and chicken litter were inputs that maximized biogas production; (3) an online web-tool based on the machine learning models was developed to enhance the analytical capabilities of biogas project operators; (4) an online waste resource mapping tool was also developed for macro-level project location planning. This research has wide implications for biogas project operators seeking to enhance facility performance by incorporating machine learning into the analytical pipeline." @default.
- W2912704538 created "2019-02-21" @default.
- W2912704538 creator A5006409524 @default.
- W2912704538 creator A5032035060 @default.
- W2912704538 creator A5036700161 @default.
- W2912704538 creator A5053201606 @default.
- W2912704538 creator A5056318788 @default.
- W2912704538 creator A5060009956 @default.
- W2912704538 creator A5070540133 @default.
- W2912704538 creator A5072721152 @default.
- W2912704538 creator A5091525213 @default.
- W2912704538 date "2019-05-01" @default.
- W2912704538 modified "2023-10-17" @default.
- W2912704538 title "Machine learning powered software for accurate prediction of biogas production: A case study on industrial-scale Chinese production data" @default.
- W2912704538 cites W1976475758 @default.
- W2912704538 cites W1983920576 @default.
- W2912704538 cites W2003473459 @default.
- W2912704538 cites W2007324918 @default.
- W2912704538 cites W2010148300 @default.
- W2912704538 cites W2013771401 @default.
- W2912704538 cites W2026381832 @default.
- W2912704538 cites W2032061045 @default.
- W2912704538 cites W2042008474 @default.
- W2912704538 cites W2048561114 @default.
- W2912704538 cites W2070484959 @default.
- W2912704538 cites W2072050665 @default.
- W2912704538 cites W2076801424 @default.
- W2912704538 cites W2087166912 @default.
- W2912704538 cites W2172248425 @default.
- W2912704538 cites W2211844091 @default.
- W2912704538 cites W2253350397 @default.
- W2912704538 cites W2275438971 @default.
- W2912704538 cites W2276699317 @default.
- W2912704538 cites W2296377105 @default.
- W2912704538 cites W2338427865 @default.
- W2912704538 cites W2341919907 @default.
- W2912704538 cites W2377013308 @default.
- W2912704538 cites W2462410779 @default.
- W2912704538 cites W2471118649 @default.
- W2912704538 cites W2477325593 @default.
- W2912704538 cites W2510013369 @default.
- W2912704538 cites W2525259562 @default.
- W2912704538 cites W2529742705 @default.
- W2912704538 cites W2534236511 @default.
- W2912704538 cites W2558698564 @default.
- W2912704538 cites W2559008206 @default.
- W2912704538 cites W2576799068 @default.
- W2912704538 cites W2586297576 @default.
- W2912704538 cites W2594577230 @default.
- W2912704538 cites W2611524425 @default.
- W2912704538 cites W2613080243 @default.
- W2912704538 cites W2613490599 @default.
- W2912704538 cites W2613706698 @default.
- W2912704538 cites W2616577352 @default.
- W2912704538 cites W2750972503 @default.
- W2912704538 cites W2755270355 @default.
- W2912704538 cites W2765184165 @default.
- W2912704538 cites W2771112617 @default.
- W2912704538 cites W2774798868 @default.
- W2912704538 cites W2792946916 @default.
- W2912704538 cites W2794649776 @default.
- W2912704538 cites W2801594439 @default.
- W2912704538 cites W2963100393 @default.
- W2912704538 cites W41116131 @default.
- W2912704538 cites W634556135 @default.
- W2912704538 doi "https://doi.org/10.1016/j.jclepro.2019.01.031" @default.
- W2912704538 hasPublicationYear "2019" @default.
- W2912704538 type Work @default.
- W2912704538 sameAs 2912704538 @default.
- W2912704538 citedByCount "73" @default.
- W2912704538 countsByYear W29127045382019 @default.
- W2912704538 countsByYear W29127045382020 @default.
- W2912704538 countsByYear W29127045382021 @default.
- W2912704538 countsByYear W29127045382022 @default.
- W2912704538 countsByYear W29127045382023 @default.
- W2912704538 crossrefType "journal-article" @default.
- W2912704538 hasAuthorship W2912704538A5006409524 @default.
- W2912704538 hasAuthorship W2912704538A5032035060 @default.
- W2912704538 hasAuthorship W2912704538A5036700161 @default.
- W2912704538 hasAuthorship W2912704538A5053201606 @default.
- W2912704538 hasAuthorship W2912704538A5056318788 @default.
- W2912704538 hasAuthorship W2912704538A5060009956 @default.
- W2912704538 hasAuthorship W2912704538A5070540133 @default.
- W2912704538 hasAuthorship W2912704538A5072721152 @default.
- W2912704538 hasAuthorship W2912704538A5091525213 @default.
- W2912704538 hasConcept C117671659 @default.
- W2912704538 hasConcept C121332964 @default.
- W2912704538 hasConcept C127413603 @default.
- W2912704538 hasConcept C13736549 @default.
- W2912704538 hasConcept C139719470 @default.
- W2912704538 hasConcept C162324750 @default.
- W2912704538 hasConcept C18903297 @default.
- W2912704538 hasConcept C199360897 @default.
- W2912704538 hasConcept C21880701 @default.
- W2912704538 hasConcept C2777904410 @default.
- W2912704538 hasConcept C2778348673 @default.
- W2912704538 hasConcept C2778755073 @default.
- W2912704538 hasConcept C2994333036 @default.