Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912708252> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2912708252 endingPage "986" @default.
- W2912708252 startingPage "978" @default.
- W2912708252 abstract "This paper presents a novel method for hierarchical analysis of machine learning algorithms to improve predictions of at risk patients, thus further enabling prompt therapy. Specifically, we develop a multi-layer machine learning approach to analyze continuous, high-frequency data. We illustrate the capabilities of this approach for early identification of patients at risk of sepsis, a potentially life-threatening complication of an infection, using highfrequency (minute-by-minute) physiological data collected from bedside monitors. In our analysis of a cohort of 586 patients, the model obtained from analyzing the output of a previously developed sepsis prediction model resulted in improved outcomes. Specifically, the original model failed to predict 11.76 ± 4.26% of sepsis patients earlier than Systemic Inflammatory Response Syndrome (SIRS) criteria, commonly used to identify patients at risk for rapid physiological deterioration resulting from sepsis. In contrast, the multi-layer model only failed to predict 3.21 ± 3.11% of sepsis patients earlier than SIRS. In addition, sepsis patients were predicted on average 204.87 ± 7.90 minutes earlier than SIRS criteria using the multi-layer model, which can potentially help reduce mortality and morbidity if implemented in the ICU." @default.
- W2912708252 created "2019-02-21" @default.
- W2912708252 creator A5005681030 @default.
- W2912708252 creator A5012511062 @default.
- W2912708252 creator A5032338988 @default.
- W2912708252 date "2019-05-01" @default.
- W2912708252 modified "2023-09-30" @default.
- W2912708252 title "Improving Prediction Performance Using Hierarchical Analysis of Real-Time Data: A Sepsis Case Study" @default.
- W2912708252 cites W1594031697 @default.
- W2912708252 cites W1898928487 @default.
- W2912708252 cites W1943063538 @default.
- W2912708252 cites W1980694603 @default.
- W2912708252 cites W1994961181 @default.
- W2912708252 cites W2001741247 @default.
- W2912708252 cites W2004512400 @default.
- W2912708252 cites W2010423516 @default.
- W2912708252 cites W2062000081 @default.
- W2912708252 cites W2073792037 @default.
- W2912708252 cites W2094265468 @default.
- W2912708252 cites W2100220027 @default.
- W2912708252 cites W2120751691 @default.
- W2912708252 cites W2164598857 @default.
- W2912708252 cites W2240965754 @default.
- W2912708252 cites W2280404143 @default.
- W2912708252 cites W2282181907 @default.
- W2912708252 cites W2474751315 @default.
- W2912708252 cites W2528545823 @default.
- W2912708252 cites W2580821343 @default.
- W2912708252 cites W2617911292 @default.
- W2912708252 cites W2732627754 @default.
- W2912708252 cites W2748885884 @default.
- W2912708252 cites W2754911676 @default.
- W2912708252 cites W2760248081 @default.
- W2912708252 cites W2776803885 @default.
- W2912708252 cites W2782333146 @default.
- W2912708252 cites W2786635213 @default.
- W2912708252 cites W2892863488 @default.
- W2912708252 cites W2905123315 @default.
- W2912708252 cites W2911964244 @default.
- W2912708252 cites W4212883601 @default.
- W2912708252 doi "https://doi.org/10.1109/jbhi.2019.2894570" @default.
- W2912708252 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30676988" @default.
- W2912708252 hasPublicationYear "2019" @default.
- W2912708252 type Work @default.
- W2912708252 sameAs 2912708252 @default.
- W2912708252 citedByCount "36" @default.
- W2912708252 countsByYear W29127082522019 @default.
- W2912708252 countsByYear W29127082522020 @default.
- W2912708252 countsByYear W29127082522021 @default.
- W2912708252 countsByYear W29127082522022 @default.
- W2912708252 countsByYear W29127082522023 @default.
- W2912708252 crossrefType "journal-article" @default.
- W2912708252 hasAuthorship W2912708252A5005681030 @default.
- W2912708252 hasAuthorship W2912708252A5012511062 @default.
- W2912708252 hasAuthorship W2912708252A5032338988 @default.
- W2912708252 hasConcept C119857082 @default.
- W2912708252 hasConcept C124101348 @default.
- W2912708252 hasConcept C126322002 @default.
- W2912708252 hasConcept C177713679 @default.
- W2912708252 hasConcept C2778384902 @default.
- W2912708252 hasConcept C2781090800 @default.
- W2912708252 hasConcept C41008148 @default.
- W2912708252 hasConcept C71924100 @default.
- W2912708252 hasConcept C72563966 @default.
- W2912708252 hasConceptScore W2912708252C119857082 @default.
- W2912708252 hasConceptScore W2912708252C124101348 @default.
- W2912708252 hasConceptScore W2912708252C126322002 @default.
- W2912708252 hasConceptScore W2912708252C177713679 @default.
- W2912708252 hasConceptScore W2912708252C2778384902 @default.
- W2912708252 hasConceptScore W2912708252C2781090800 @default.
- W2912708252 hasConceptScore W2912708252C41008148 @default.
- W2912708252 hasConceptScore W2912708252C71924100 @default.
- W2912708252 hasConceptScore W2912708252C72563966 @default.
- W2912708252 hasIssue "3" @default.
- W2912708252 hasLocation W29127082521 @default.
- W2912708252 hasLocation W29127082522 @default.
- W2912708252 hasOpenAccess W2912708252 @default.
- W2912708252 hasPrimaryLocation W29127082521 @default.
- W2912708252 hasRelatedWork W121974019 @default.
- W2912708252 hasRelatedWork W1815707645 @default.
- W2912708252 hasRelatedWork W2412142349 @default.
- W2912708252 hasRelatedWork W2417055884 @default.
- W2912708252 hasRelatedWork W2465673526 @default.
- W2912708252 hasRelatedWork W2739619278 @default.
- W2912708252 hasRelatedWork W2987893214 @default.
- W2912708252 hasRelatedWork W3029035552 @default.
- W2912708252 hasRelatedWork W4295928423 @default.
- W2912708252 hasRelatedWork W9620107 @default.
- W2912708252 hasVolume "23" @default.
- W2912708252 isParatext "false" @default.
- W2912708252 isRetracted "false" @default.
- W2912708252 magId "2912708252" @default.
- W2912708252 workType "article" @default.