Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912708352> ?p ?o ?g. }
- W2912708352 endingPage "338" @default.
- W2912708352 startingPage "338" @default.
- W2912708352 abstract "Scientifically robust yet economical and efficient methods are required to gather information about larger areas of uneven-aged forest resources, particularly at the landscape level, to reduce deforestation and forest degradation and to support the sustainable management of forest resources. In this study, we examined the potential of digital aerial photogrammetry (DAP) for assessing uneven-aged forest resources. Specifically, we tested the performance of biomass estimation by varying the conditions of several factors, e.g., image downscaling, vegetation metric extraction (point cloud- and canopy height model (CHM)-derived), modeling method ((simple linear regression (SLR), multiple linear regression (MLR), and random forest (RF)), and season (leaf-on and leaf-off). We built dense point clouds and CHMs using high-resolution aerial imagery collected in leaf-on and leaf-off conditions of an uneven-aged mixed conifer–broadleaf forest. DAP-derived vegetation metrics were then used to predict the dominant height and living biomass (total, conifer, and broadleaf) at the plot level. Our results demonstrated that image downscaling had a negative impact on the accuracy of the dominant height and biomass estimation in leaf-on conditions. In comparison to CHM-derived vegetation metrics, point cloud-derived metrics performed better in dominant height and biomass (total and conifer) estimations. Although the SLR (%RMSE = 21.1) and MLR (%RMSE = 18.1) modeling methods produced acceptable results for total biomass estimations, RF modeling significantly improved the plot-level total biomass estimation accuracy (%RMSE of 12.0 for leaf-on data). Overall, leaf-on DAP performed better in total biomass estimation compared to leaf-off DAP (%RMSE of 15.0 using RF modeling). Nevertheless, conifer biomass estimation accuracy improved when leaf-off data were used (from a %RMSE of 32.1 leaf-on to 23.8 leaf-off using RF modeling). Leaf-off DAP had a negative impact on the broadleaf biomass estimation (%RMSE > 35% for SLR, MLR, and RF modeling). Our results demonstrated that the performance of forest biomass estimation for uneven-aged forests varied with statistical representations as well as data sources. Thus, it would be appropriate to explore different statistical approaches (e.g., parametric and nonparametric) and data sources (e.g., different image resolutions, vegetation metrics, and leaf-on and leaf-off data) to inform the interpretation of remotely sensed data for biomass estimation for uneven-aged forest resources." @default.
- W2912708352 created "2019-02-21" @default.
- W2912708352 creator A5013213920 @default.
- W2912708352 creator A5030553472 @default.
- W2912708352 creator A5077247387 @default.
- W2912708352 date "2019-02-08" @default.
- W2912708352 modified "2023-10-16" @default.
- W2912708352 title "Digital Aerial Photogrammetry for Uneven-Aged Forest Management: Assessing the Potential to Reconstruct Canopy Structure and Estimate Living Biomass" @default.
- W2912708352 cites W1496824059 @default.
- W2912708352 cites W1522525389 @default.
- W2912708352 cites W1822357580 @default.
- W2912708352 cites W1939619463 @default.
- W2912708352 cites W1963778439 @default.
- W2912708352 cites W1977109346 @default.
- W2912708352 cites W1981527205 @default.
- W2912708352 cites W1990763871 @default.
- W2912708352 cites W2001341908 @default.
- W2912708352 cites W2002008272 @default.
- W2912708352 cites W2002041313 @default.
- W2912708352 cites W2005156666 @default.
- W2912708352 cites W2005885990 @default.
- W2912708352 cites W2019400639 @default.
- W2912708352 cites W2019549520 @default.
- W2912708352 cites W2020520344 @default.
- W2912708352 cites W2055883695 @default.
- W2912708352 cites W2061423527 @default.
- W2912708352 cites W2083805427 @default.
- W2912708352 cites W2089212648 @default.
- W2912708352 cites W2091084944 @default.
- W2912708352 cites W2091939427 @default.
- W2912708352 cites W2106080357 @default.
- W2912708352 cites W2106200101 @default.
- W2912708352 cites W2111645678 @default.
- W2912708352 cites W2120225005 @default.
- W2912708352 cites W2122450383 @default.
- W2912708352 cites W2130464813 @default.
- W2912708352 cites W2133715570 @default.
- W2912708352 cites W2145243492 @default.
- W2912708352 cites W2157929592 @default.
- W2912708352 cites W2161548576 @default.
- W2912708352 cites W2235215170 @default.
- W2912708352 cites W2312732863 @default.
- W2912708352 cites W2323137278 @default.
- W2912708352 cites W2342810959 @default.
- W2912708352 cites W2413910992 @default.
- W2912708352 cites W2549123380 @default.
- W2912708352 cites W2556502614 @default.
- W2912708352 cites W2585253555 @default.
- W2912708352 cites W2592745428 @default.
- W2912708352 cites W2602191071 @default.
- W2912708352 cites W2605779321 @default.
- W2912708352 cites W2606424434 @default.
- W2912708352 cites W2751418581 @default.
- W2912708352 cites W2780388729 @default.
- W2912708352 cites W2790349426 @default.
- W2912708352 cites W2791554042 @default.
- W2912708352 cites W2792846923 @default.
- W2912708352 cites W2793581700 @default.
- W2912708352 cites W2870995723 @default.
- W2912708352 cites W2889568346 @default.
- W2912708352 cites W2890816417 @default.
- W2912708352 cites W2894219699 @default.
- W2912708352 cites W2894977581 @default.
- W2912708352 cites W2901577545 @default.
- W2912708352 cites W2911964244 @default.
- W2912708352 cites W4244102296 @default.
- W2912708352 doi "https://doi.org/10.3390/rs11030338" @default.
- W2912708352 hasPublicationYear "2019" @default.
- W2912708352 type Work @default.
- W2912708352 sameAs 2912708352 @default.
- W2912708352 citedByCount "28" @default.
- W2912708352 countsByYear W29127083522019 @default.
- W2912708352 countsByYear W29127083522020 @default.
- W2912708352 countsByYear W29127083522021 @default.
- W2912708352 countsByYear W29127083522022 @default.
- W2912708352 countsByYear W29127083522023 @default.
- W2912708352 crossrefType "journal-article" @default.
- W2912708352 hasAuthorship W2912708352A5013213920 @default.
- W2912708352 hasAuthorship W2912708352A5030553472 @default.
- W2912708352 hasAuthorship W2912708352A5077247387 @default.
- W2912708352 hasBestOaLocation W29127083521 @default.
- W2912708352 hasConcept C101000010 @default.
- W2912708352 hasConcept C105795698 @default.
- W2912708352 hasConcept C107054158 @default.
- W2912708352 hasConcept C115540264 @default.
- W2912708352 hasConcept C117455697 @default.
- W2912708352 hasConcept C131979681 @default.
- W2912708352 hasConcept C139945424 @default.
- W2912708352 hasConcept C142724271 @default.
- W2912708352 hasConcept C153294291 @default.
- W2912708352 hasConcept C166957645 @default.
- W2912708352 hasConcept C205649164 @default.
- W2912708352 hasConcept C25989453 @default.
- W2912708352 hasConcept C2776133958 @default.
- W2912708352 hasConcept C31972630 @default.
- W2912708352 hasConcept C33923547 @default.
- W2912708352 hasConcept C39432304 @default.
- W2912708352 hasConcept C41008148 @default.