Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912709882> ?p ?o ?g. }
Showing items 1 to 60 of
60
with 100 items per page.
- W2912709882 abstract "In recent years, people in big cities tend to take the subway. In the morning and evening, the carrying capacity of the subway is very large, and the quality of the early thermal environment will be seriously reduced. Therefore, it is important to analyze the factors affecting the thermal environment of the subway station and predict the temperature. In this paper, a model based on Random Vector Functional Link Neural Network (RVFLNN) is proposed. The study results show that the temperature forecast model can effectively and quickly predict the temperature in subway station." @default.
- W2912709882 created "2019-02-21" @default.
- W2912709882 creator A5005215310 @default.
- W2912709882 creator A5014154811 @default.
- W2912709882 creator A5031767581 @default.
- W2912709882 creator A5034995105 @default.
- W2912709882 date "2018-10-01" @default.
- W2912709882 modified "2023-10-10" @default.
- W2912709882 title "The Forecast of the Temperature in Subway Station Based on RVFL Neural Network" @default.
- W2912709882 cites W1986278072 @default.
- W2912709882 cites W2000872950 @default.
- W2912709882 cites W2297290677 @default.
- W2912709882 cites W2467318186 @default.
- W2912709882 cites W2535895851 @default.
- W2912709882 doi "https://doi.org/10.1109/cisp-bmei.2018.8633012" @default.
- W2912709882 hasPublicationYear "2018" @default.
- W2912709882 type Work @default.
- W2912709882 sameAs 2912709882 @default.
- W2912709882 citedByCount "2" @default.
- W2912709882 countsByYear W29127098822021 @default.
- W2912709882 crossrefType "proceedings-article" @default.
- W2912709882 hasAuthorship W2912709882A5005215310 @default.
- W2912709882 hasAuthorship W2912709882A5014154811 @default.
- W2912709882 hasAuthorship W2912709882A5031767581 @default.
- W2912709882 hasAuthorship W2912709882A5034995105 @default.
- W2912709882 hasConcept C127413603 @default.
- W2912709882 hasConcept C153294291 @default.
- W2912709882 hasConcept C154945302 @default.
- W2912709882 hasConcept C205649164 @default.
- W2912709882 hasConcept C22212356 @default.
- W2912709882 hasConcept C2993393817 @default.
- W2912709882 hasConcept C39432304 @default.
- W2912709882 hasConcept C41008148 @default.
- W2912709882 hasConcept C50644808 @default.
- W2912709882 hasConceptScore W2912709882C127413603 @default.
- W2912709882 hasConceptScore W2912709882C153294291 @default.
- W2912709882 hasConceptScore W2912709882C154945302 @default.
- W2912709882 hasConceptScore W2912709882C205649164 @default.
- W2912709882 hasConceptScore W2912709882C22212356 @default.
- W2912709882 hasConceptScore W2912709882C2993393817 @default.
- W2912709882 hasConceptScore W2912709882C39432304 @default.
- W2912709882 hasConceptScore W2912709882C41008148 @default.
- W2912709882 hasConceptScore W2912709882C50644808 @default.
- W2912709882 hasLocation W29127098821 @default.
- W2912709882 hasOpenAccess W2912709882 @default.
- W2912709882 hasPrimaryLocation W29127098821 @default.
- W2912709882 hasRelatedWork W1568055046 @default.
- W2912709882 hasRelatedWork W1576110177 @default.
- W2912709882 hasRelatedWork W2096394086 @default.
- W2912709882 hasRelatedWork W2136552294 @default.
- W2912709882 hasRelatedWork W2280534553 @default.
- W2912709882 hasRelatedWork W2355207879 @default.
- W2912709882 hasRelatedWork W2358366058 @default.
- W2912709882 hasRelatedWork W2363030148 @default.
- W2912709882 hasRelatedWork W2386387936 @default.
- W2912709882 hasRelatedWork W2748952813 @default.
- W2912709882 isParatext "false" @default.
- W2912709882 isRetracted "false" @default.
- W2912709882 magId "2912709882" @default.
- W2912709882 workType "article" @default.