Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912720163> ?p ?o ?g. }
- W2912720163 endingPage "1385" @default.
- W2912720163 startingPage "1371" @default.
- W2912720163 abstract "Abstract Although many studies demonstrate lake warming, few document trends from lakes with sparse data. Diel and seasonal variability of surface temperatures limit conventional trend analyses to datasets with frequent repeated observations. Thus, remote lakes, including many high elevation lakes, are underrepresented in trend analyses. We used a Bayesian technique to analyze sparse data that explicitly incorporated diel and seasonal variability. This approach allowed us to estimate lake warming in a region of limited knowledge: high elevation lakes (> 2100 m ASL) of the Southern Rocky Mountains, U.S.A. The analysis allowed for inclusion of lakes with few repeated measurements, and observations made before 1980 when more intensive lake monitoring began. We accumulated the largest dataset of high elevation lake temperatures analyzed to date. Data from 590 high elevation lakes in the Southern Rocky Mountains showed a 0.13°C decade −1 increase in surface temperatures and a 14% increase in seasonal degree days since 1955. This result is lower than other regional and global estimates of lake warming; however, it is similar to other high elevation lake studies. Our approach can be applied to other understudied regions, increasing our overall understanding of the effects of climate change on lakes and their temporal dynamics." @default.
- W2912720163 created "2019-02-21" @default.
- W2912720163 creator A5040358467 @default.
- W2912720163 creator A5049326693 @default.
- W2912720163 creator A5054081692 @default.
- W2912720163 creator A5082476482 @default.
- W2912720163 date "2019-01-28" @default.
- W2912720163 modified "2023-10-16" @default.
- W2912720163 title "Estimating lake–climate responses from sparse data: An application to high elevation lakes" @default.
- W2912720163 cites W1224122335 @default.
- W2912720163 cites W1515571821 @default.
- W2912720163 cites W1527222203 @default.
- W2912720163 cites W1647380342 @default.
- W2912720163 cites W1900652836 @default.
- W2912720163 cites W1910270189 @default.
- W2912720163 cites W1982496333 @default.
- W2912720163 cites W1983085330 @default.
- W2912720163 cites W1991691903 @default.
- W2912720163 cites W1993314611 @default.
- W2912720163 cites W1993975089 @default.
- W2912720163 cites W2006329731 @default.
- W2912720163 cites W2009669221 @default.
- W2912720163 cites W2016533456 @default.
- W2912720163 cites W2016907280 @default.
- W2912720163 cites W2023325083 @default.
- W2912720163 cites W2027123461 @default.
- W2912720163 cites W2041174160 @default.
- W2912720163 cites W2044782229 @default.
- W2912720163 cites W2045772148 @default.
- W2912720163 cites W2049790355 @default.
- W2912720163 cites W2060634572 @default.
- W2912720163 cites W2072081056 @default.
- W2912720163 cites W2076276613 @default.
- W2912720163 cites W2078860594 @default.
- W2912720163 cites W2094378139 @default.
- W2912720163 cites W2095694536 @default.
- W2912720163 cites W2096291860 @default.
- W2912720163 cites W2096762133 @default.
- W2912720163 cites W2100262438 @default.
- W2912720163 cites W2100468073 @default.
- W2912720163 cites W2102005578 @default.
- W2912720163 cites W2103810495 @default.
- W2912720163 cites W2105118753 @default.
- W2912720163 cites W2106195233 @default.
- W2912720163 cites W2108506046 @default.
- W2912720163 cites W2108686678 @default.
- W2912720163 cites W2108775501 @default.
- W2912720163 cites W2108895831 @default.
- W2912720163 cites W2110249753 @default.
- W2912720163 cites W2114039295 @default.
- W2912720163 cites W2116309333 @default.
- W2912720163 cites W2118037732 @default.
- W2912720163 cites W2118475613 @default.
- W2912720163 cites W2127565131 @default.
- W2912720163 cites W2137734568 @default.
- W2912720163 cites W2148534890 @default.
- W2912720163 cites W2156421709 @default.
- W2912720163 cites W2156533079 @default.
- W2912720163 cites W2158139772 @default.
- W2912720163 cites W2161082169 @default.
- W2912720163 cites W2161829879 @default.
- W2912720163 cites W2177333222 @default.
- W2912720163 cites W2202665948 @default.
- W2912720163 cites W2295803031 @default.
- W2912720163 cites W2315334155 @default.
- W2912720163 cites W2315767127 @default.
- W2912720163 cites W2320427834 @default.
- W2912720163 cites W2333575771 @default.
- W2912720163 cites W2388622161 @default.
- W2912720163 cites W2437251295 @default.
- W2912720163 cites W2481688151 @default.
- W2912720163 cites W2491145952 @default.
- W2912720163 cites W2525842645 @default.
- W2912720163 cites W2534679262 @default.
- W2912720163 cites W2555236075 @default.
- W2912720163 cites W2567472996 @default.
- W2912720163 cites W2585983256 @default.
- W2912720163 cites W2613991015 @default.
- W2912720163 cites W2619919478 @default.
- W2912720163 cites W2620405081 @default.
- W2912720163 cites W2638942861 @default.
- W2912720163 cites W2642065602 @default.
- W2912720163 cites W2727274968 @default.
- W2912720163 cites W2806559037 @default.
- W2912720163 cites W2886804189 @default.
- W2912720163 cites W4245399135 @default.
- W2912720163 cites W4249731213 @default.
- W2912720163 doi "https://doi.org/10.1002/lno.11121" @default.
- W2912720163 hasPublicationYear "2019" @default.
- W2912720163 type Work @default.
- W2912720163 sameAs 2912720163 @default.
- W2912720163 citedByCount "8" @default.
- W2912720163 countsByYear W29127201632019 @default.
- W2912720163 countsByYear W29127201632020 @default.
- W2912720163 countsByYear W29127201632022 @default.
- W2912720163 crossrefType "journal-article" @default.
- W2912720163 hasAuthorship W2912720163A5040358467 @default.
- W2912720163 hasAuthorship W2912720163A5049326693 @default.