Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912721718> ?p ?o ?g. }
- W2912721718 endingPage "2189" @default.
- W2912721718 startingPage "2176" @default.
- W2912721718 abstract "The superior interpretability and uncertainty modeling ability of Takagi-Sugeno-Kang fuzzy system (TSK FS) make it possible to describe complex nonlinear systems intuitively and efficiently. However, classical TSK FS usually adopts the whole feature space of the data for model construction, which can result in lengthy rules for high-dimensional data and lead to degeneration in interpretability. Furthermore, for highly nonlinear modeling task, it is usually necessary to use a large number of rules which further weaken the clarity and interpretability of TSK FS. To address these issues, an enhanced soft subspace clustering (ESSC) and sparse learning (SL) based concise zero-order TSK FS construction method, called ESSC-SL-CTSK-FS, is proposed in this paper by integrating the techniques of ESSC and SL. In this method, ESSC is used to generate the antecedents and various sparse subspaces for different fuzzy rules, whereas SL is used to optimize the consequent parameters of the fuzzy rules based on which the number of fuzzy rules can be effectively reduced. Finally, the proposed ESSC-SL-CTSK-FS method is used to construct concise zero-order TSK FS that can explain the scenes in high-dimensional data modeling more clearly and easily. Experiments are conducted on various real-world datasets to confirm the advantages." @default.
- W2912721718 created "2019-02-21" @default.
- W2912721718 creator A5003183751 @default.
- W2912721718 creator A5004868931 @default.
- W2912721718 creator A5006607316 @default.
- W2912721718 creator A5036763100 @default.
- W2912721718 creator A5042607110 @default.
- W2912721718 creator A5048680068 @default.
- W2912721718 creator A5055163327 @default.
- W2912721718 creator A5088465882 @default.
- W2912721718 date "2019-11-01" @default.
- W2912721718 modified "2023-09-26" @default.
- W2912721718 title "Concise Fuzzy System Modeling Integrating Soft Subspace Clustering and Sparse Learning" @default.
- W2912721718 cites W1494581921 @default.
- W2912721718 cites W1849277567 @default.
- W2912721718 cites W1915485278 @default.
- W2912721718 cites W1987552279 @default.
- W2912721718 cites W1995450389 @default.
- W2912721718 cites W2002917851 @default.
- W2912721718 cites W2049282057 @default.
- W2912721718 cites W2053036794 @default.
- W2912721718 cites W2057683924 @default.
- W2912721718 cites W2072265605 @default.
- W2912721718 cites W2078313470 @default.
- W2912721718 cites W2080404350 @default.
- W2912721718 cites W2080476941 @default.
- W2912721718 cites W2082466231 @default.
- W2912721718 cites W2092108829 @default.
- W2912721718 cites W2095512713 @default.
- W2912721718 cites W2116046819 @default.
- W2912721718 cites W2117686388 @default.
- W2912721718 cites W2118978333 @default.
- W2912721718 cites W2125070513 @default.
- W2912721718 cites W2156383341 @default.
- W2912721718 cites W2170505850 @default.
- W2912721718 cites W219179425 @default.
- W2912721718 cites W2241072627 @default.
- W2912721718 cites W2282821441 @default.
- W2912721718 cites W2315271685 @default.
- W2912721718 cites W2488269320 @default.
- W2912721718 cites W2518659603 @default.
- W2912721718 cites W2557279148 @default.
- W2912721718 cites W2584281025 @default.
- W2912721718 cites W2603766943 @default.
- W2912721718 cites W2624238479 @default.
- W2912721718 cites W2657631929 @default.
- W2912721718 cites W2749278966 @default.
- W2912721718 cites W2765814738 @default.
- W2912721718 cites W2810229480 @default.
- W2912721718 cites W2887576641 @default.
- W2912721718 cites W2963125461 @default.
- W2912721718 cites W2963749936 @default.
- W2912721718 cites W861238194 @default.
- W2912721718 doi "https://doi.org/10.1109/tfuzz.2019.2895572" @default.
- W2912721718 hasPublicationYear "2019" @default.
- W2912721718 type Work @default.
- W2912721718 sameAs 2912721718 @default.
- W2912721718 citedByCount "26" @default.
- W2912721718 countsByYear W29127217182019 @default.
- W2912721718 countsByYear W29127217182020 @default.
- W2912721718 countsByYear W29127217182021 @default.
- W2912721718 countsByYear W29127217182022 @default.
- W2912721718 countsByYear W29127217182023 @default.
- W2912721718 crossrefType "journal-article" @default.
- W2912721718 hasAuthorship W2912721718A5003183751 @default.
- W2912721718 hasAuthorship W2912721718A5004868931 @default.
- W2912721718 hasAuthorship W2912721718A5006607316 @default.
- W2912721718 hasAuthorship W2912721718A5036763100 @default.
- W2912721718 hasAuthorship W2912721718A5042607110 @default.
- W2912721718 hasAuthorship W2912721718A5048680068 @default.
- W2912721718 hasAuthorship W2912721718A5055163327 @default.
- W2912721718 hasAuthorship W2912721718A5088465882 @default.
- W2912721718 hasBestOaLocation W29127217182 @default.
- W2912721718 hasConcept C119857082 @default.
- W2912721718 hasConcept C124101348 @default.
- W2912721718 hasConcept C138885662 @default.
- W2912721718 hasConcept C153180895 @default.
- W2912721718 hasConcept C154945302 @default.
- W2912721718 hasConcept C2776401178 @default.
- W2912721718 hasConcept C2781067378 @default.
- W2912721718 hasConcept C32834561 @default.
- W2912721718 hasConcept C41008148 @default.
- W2912721718 hasConcept C41895202 @default.
- W2912721718 hasConcept C58166 @default.
- W2912721718 hasConcept C73555534 @default.
- W2912721718 hasConceptScore W2912721718C119857082 @default.
- W2912721718 hasConceptScore W2912721718C124101348 @default.
- W2912721718 hasConceptScore W2912721718C138885662 @default.
- W2912721718 hasConceptScore W2912721718C153180895 @default.
- W2912721718 hasConceptScore W2912721718C154945302 @default.
- W2912721718 hasConceptScore W2912721718C2776401178 @default.
- W2912721718 hasConceptScore W2912721718C2781067378 @default.
- W2912721718 hasConceptScore W2912721718C32834561 @default.
- W2912721718 hasConceptScore W2912721718C41008148 @default.
- W2912721718 hasConceptScore W2912721718C41895202 @default.
- W2912721718 hasConceptScore W2912721718C58166 @default.
- W2912721718 hasConceptScore W2912721718C73555534 @default.
- W2912721718 hasFunder F4320321001 @default.