Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912730087> ?p ?o ?g. }
- W2912730087 endingPage "310" @default.
- W2912730087 startingPage "283" @default.
- W2912730087 abstract "In the present study, we develop a generalised Godunov-type multi-directional characteristics-based (MCB) scheme which is applicable to any hyperbolic system for modelling incompressible flows. We further extend the MCB scheme to include the solution of the local Riemann problem which leads to a hybrid mathematical treatment of the system of equations. We employ the proposed scheme to hyperbolic-type incompressible flow solvers and apply it to the Artificial Compressibility (AC) and Fractional-Step, Artificial Compressibility with Pressure Projection (FSAC-PP) method. In this work, we show that the MCB scheme may improve the accuracy and convergence properties over the classical single-directional characteristics-based (SCB) and non-characteristic treatments. The inclusion of a Riemann solver in conjunction with the MCB scheme is capable of reducing the number of iterations up to a factor of 4.7 times compared to a solution when a Riemann solver is not included. Furthermore, we found that both the AC and FSAC-PP method showed similar levels of accuracy while the FSAC-PP method converged up to 5.8 times faster than the AC method for steady state flows. Independent of the characteristics- and Riemann solver-based treatment of all primitive variables, we found that the FSAC-PP method is 7–200 times faster than the AC method per pseudo-time step for unsteady flows. We investigate low- and high-Reynolds number problems for well-established validation benchmark test cases focusing on a flow inside of a lid driven cavity, evolution of the Taylor–Green vortex and forced separated flow over a backward-facing step. In addition to this, comparisons between a central difference scheme with artificial dissipation and a low-dissipative interpolation scheme have been performed. The results show that the latter approach may not provide enough numerical dissipation to develop the flow at high-Reynolds numbers. We found that the inclusion of a Riemann solver is able to overcome this shortcoming. Overall, the proposed generalised Godunov-type MCB scheme provides an accurate numerical treatment with improved convergence properties for hyperbolic-type incompressible flow solvers. Program Title: unified2D-C Program Files doi: http://dx.doi.org/10.17632/8m3dw6zkgc.1 Licensing provisions: CC BY NC 3.0 Programming language: C++ Nature of problem: Incompressible flow solver have generally a non-hyperbolic type and thus the method of characteristics and Riemann solvers cannot be used without modifications for low speed flows. In the framework of compressible flows, the Riemann problem – and the method of characteristics which is closely related to it – is an essential part of the solution procedure. The Riemann solver is able to preserve the conservativeness and, through the evaluation of the eigenstructure of the system, introduces transportiveness into the spatial reconstruction schemes. The characteristics-based scheme allows to couple the pressure and velocity in a physical manner which, together with the Riemann solver, presents a new multi-directional Godunov framework for incompressible flows. Solution method: We show a generalised description of a multi-directional characteristics-based schemes which may be used with any incompressible and hyperbolic system of equations. The Finite Volume approach is used where inter-cell fluxes are reconstructed through a simple but higher-order polynomial interpolation scheme which only adds numerical dissipation proportional to its Taylor-series truncation error. We use the Rusanov Riemann solver which provides the needed conservativeness and transportiveness. It also adds just enough numerical dissipation for cases where the dissipation of the numerical scheme is not sufficient while retaining a high level of accuracy." @default.
- W2912730087 created "2019-02-21" @default.
- W2912730087 creator A5043413211 @default.
- W2912730087 creator A5044734801 @default.
- W2912730087 creator A5047835024 @default.
- W2912730087 date "2019-06-01" @default.
- W2912730087 modified "2023-09-27" @default.
- W2912730087 title "A generalised and low-dissipative multi-directional characteristics-based scheme with inclusion of the local Riemann problem investigating incompressible flows without free-surfaces" @default.
- W2912730087 cites W1681011433 @default.
- W2912730087 cites W1686428751 @default.
- W2912730087 cites W1900451476 @default.
- W2912730087 cites W1964355631 @default.
- W2912730087 cites W1965090229 @default.
- W2912730087 cites W1966095415 @default.
- W2912730087 cites W1968409484 @default.
- W2912730087 cites W1981287532 @default.
- W2912730087 cites W1988754720 @default.
- W2912730087 cites W1995651707 @default.
- W2912730087 cites W2004377874 @default.
- W2912730087 cites W2020293419 @default.
- W2912730087 cites W2021041911 @default.
- W2912730087 cites W2033160387 @default.
- W2912730087 cites W2034881853 @default.
- W2912730087 cites W2036895361 @default.
- W2912730087 cites W2039150507 @default.
- W2912730087 cites W2041996943 @default.
- W2912730087 cites W2042146045 @default.
- W2912730087 cites W2042778957 @default.
- W2912730087 cites W2044385973 @default.
- W2912730087 cites W2045637452 @default.
- W2912730087 cites W2050286953 @default.
- W2912730087 cites W2051337662 @default.
- W2912730087 cites W2061493548 @default.
- W2912730087 cites W2068387216 @default.
- W2912730087 cites W2070416644 @default.
- W2912730087 cites W2073003260 @default.
- W2912730087 cites W2074800504 @default.
- W2912730087 cites W2076077791 @default.
- W2912730087 cites W2079518176 @default.
- W2912730087 cites W2083598614 @default.
- W2912730087 cites W2083898342 @default.
- W2912730087 cites W2095414683 @default.
- W2912730087 cites W2096599839 @default.
- W2912730087 cites W2098732125 @default.
- W2912730087 cites W2113046329 @default.
- W2912730087 cites W2121063243 @default.
- W2912730087 cites W2126171617 @default.
- W2912730087 cites W2129342674 @default.
- W2912730087 cites W2129824613 @default.
- W2912730087 cites W2150696232 @default.
- W2912730087 cites W215652118 @default.
- W2912730087 cites W2166733930 @default.
- W2912730087 cites W220718572 @default.
- W2912730087 cites W2239434343 @default.
- W2912730087 cites W2285661467 @default.
- W2912730087 cites W2560298424 @default.
- W2912730087 cites W2740705064 @default.
- W2912730087 cites W274269596 @default.
- W2912730087 cites W2774151035 @default.
- W2912730087 cites W3184728418 @default.
- W2912730087 cites W4246251160 @default.
- W2912730087 cites W4376596376 @default.
- W2912730087 doi "https://doi.org/10.1016/j.cpc.2018.07.026" @default.
- W2912730087 hasPublicationYear "2019" @default.
- W2912730087 type Work @default.
- W2912730087 sameAs 2912730087 @default.
- W2912730087 citedByCount "6" @default.
- W2912730087 countsByYear W29127300872019 @default.
- W2912730087 countsByYear W29127300872020 @default.
- W2912730087 crossrefType "journal-article" @default.
- W2912730087 hasAuthorship W2912730087A5043413211 @default.
- W2912730087 hasAuthorship W2912730087A5044734801 @default.
- W2912730087 hasAuthorship W2912730087A5047835024 @default.
- W2912730087 hasBestOaLocation W29127300872 @default.
- W2912730087 hasConcept C120796332 @default.
- W2912730087 hasConcept C121332964 @default.
- W2912730087 hasConcept C126255220 @default.
- W2912730087 hasConcept C134306372 @default.
- W2912730087 hasConcept C146705398 @default.
- W2912730087 hasConcept C171520575 @default.
- W2912730087 hasConcept C199479865 @default.
- W2912730087 hasConcept C202426404 @default.
- W2912730087 hasConcept C2524010 @default.
- W2912730087 hasConcept C2778770139 @default.
- W2912730087 hasConcept C28826006 @default.
- W2912730087 hasConcept C33923547 @default.
- W2912730087 hasConcept C38349280 @default.
- W2912730087 hasConcept C40709475 @default.
- W2912730087 hasConcept C48753275 @default.
- W2912730087 hasConcept C50415386 @default.
- W2912730087 hasConcept C50478463 @default.
- W2912730087 hasConcept C57879066 @default.
- W2912730087 hasConcept C62520636 @default.
- W2912730087 hasConcept C65557600 @default.
- W2912730087 hasConcept C84655787 @default.
- W2912730087 hasConcept C99692599 @default.
- W2912730087 hasConceptScore W2912730087C120796332 @default.
- W2912730087 hasConceptScore W2912730087C121332964 @default.