Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912731314> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2912731314 endingPage "20059" @default.
- W2912731314 startingPage "20050" @default.
- W2912731314 abstract "Urban air pollutant concentration prediction is dealing with a surge of massive environmental monitoring data and complex changes in air pollutants. This requires effective prediction methods to improve prediction accuracy and to prevent serious pollution incidents, thereby enhancing environmental management decision-making capacity. In this paper, a new pollutant concentration prediction method is proposed based on the vast amounts of environmental data and deep learning techniques. The proposed method integrates big data by using two kinds of deep networks. This method is based on the design that uses a convolutional neural network as the base layer, automatically extracting features of input data. A long short-term memory network is used for the output layer to consider the time dependence of pollutants. Our model consists of these two deep networks. With performance optimization, the model can predict future particulate matter (PM2.5) concentrations as a time series. Finally, the prediction results are compared with the results of numerical models. The applicability and advantages of the model are also analyzed. The experimental results show that it improves prediction performance compared with classic models." @default.
- W2912731314 created "2019-02-21" @default.
- W2912731314 creator A5007203703 @default.
- W2912731314 creator A5010485370 @default.
- W2912731314 creator A5011169181 @default.
- W2912731314 creator A5014481684 @default.
- W2912731314 creator A5044035238 @default.
- W2912731314 creator A5067173707 @default.
- W2912731314 date "2019-01-01" @default.
- W2912731314 modified "2023-10-17" @default.
- W2912731314 title "A Novel Combined Prediction Scheme Based on CNN and LSTM for Urban PM<sub>2.5</sub> Concentration" @default.
- W2912731314 cites W1498436455 @default.
- W2912731314 cites W1524406730 @default.
- W2912731314 cites W1825139135 @default.
- W2912731314 cites W1832693441 @default.
- W2912731314 cites W1979494129 @default.
- W2912731314 cites W1985258458 @default.
- W2912731314 cites W2064675550 @default.
- W2912731314 cites W2076063813 @default.
- W2912731314 cites W2083022762 @default.
- W2912731314 cites W2087673205 @default.
- W2912731314 cites W2091214913 @default.
- W2912731314 cites W2108563286 @default.
- W2912731314 cites W2109255472 @default.
- W2912731314 cites W2112796928 @default.
- W2912731314 cites W2122825543 @default.
- W2912731314 cites W2274405424 @default.
- W2912731314 cites W2315900753 @default.
- W2912731314 cites W2424778531 @default.
- W2912731314 cites W2481644207 @default.
- W2912731314 cites W2599875507 @default.
- W2912731314 cites W2737749939 @default.
- W2912731314 cites W2754252319 @default.
- W2912731314 cites W2766040222 @default.
- W2912731314 cites W4205947740 @default.
- W2912731314 cites W956374238 @default.
- W2912731314 doi "https://doi.org/10.1109/access.2019.2897028" @default.
- W2912731314 hasPublicationYear "2019" @default.
- W2912731314 type Work @default.
- W2912731314 sameAs 2912731314 @default.
- W2912731314 citedByCount "156" @default.
- W2912731314 countsByYear W29127313142019 @default.
- W2912731314 countsByYear W29127313142020 @default.
- W2912731314 countsByYear W29127313142021 @default.
- W2912731314 countsByYear W29127313142022 @default.
- W2912731314 countsByYear W29127313142023 @default.
- W2912731314 crossrefType "journal-article" @default.
- W2912731314 hasAuthorship W2912731314A5007203703 @default.
- W2912731314 hasAuthorship W2912731314A5010485370 @default.
- W2912731314 hasAuthorship W2912731314A5011169181 @default.
- W2912731314 hasAuthorship W2912731314A5014481684 @default.
- W2912731314 hasAuthorship W2912731314A5044035238 @default.
- W2912731314 hasAuthorship W2912731314A5067173707 @default.
- W2912731314 hasBestOaLocation W29127313141 @default.
- W2912731314 hasConcept C119857082 @default.
- W2912731314 hasConcept C134306372 @default.
- W2912731314 hasConcept C153180895 @default.
- W2912731314 hasConcept C154945302 @default.
- W2912731314 hasConcept C33923547 @default.
- W2912731314 hasConcept C41008148 @default.
- W2912731314 hasConcept C77618280 @default.
- W2912731314 hasConceptScore W2912731314C119857082 @default.
- W2912731314 hasConceptScore W2912731314C134306372 @default.
- W2912731314 hasConceptScore W2912731314C153180895 @default.
- W2912731314 hasConceptScore W2912731314C154945302 @default.
- W2912731314 hasConceptScore W2912731314C33923547 @default.
- W2912731314 hasConceptScore W2912731314C41008148 @default.
- W2912731314 hasConceptScore W2912731314C77618280 @default.
- W2912731314 hasFunder F4320309612 @default.
- W2912731314 hasFunder F4320321001 @default.
- W2912731314 hasLocation W29127313141 @default.
- W2912731314 hasOpenAccess W2912731314 @default.
- W2912731314 hasPrimaryLocation W29127313141 @default.
- W2912731314 hasRelatedWork W1521353230 @default.
- W2912731314 hasRelatedWork W2373250155 @default.
- W2912731314 hasRelatedWork W2961085424 @default.
- W2912731314 hasRelatedWork W3046775127 @default.
- W2912731314 hasRelatedWork W3209574120 @default.
- W2912731314 hasRelatedWork W4205958290 @default.
- W2912731314 hasRelatedWork W4286629047 @default.
- W2912731314 hasRelatedWork W4306321456 @default.
- W2912731314 hasRelatedWork W4306674287 @default.
- W2912731314 hasRelatedWork W4224009465 @default.
- W2912731314 hasVolume "7" @default.
- W2912731314 isParatext "false" @default.
- W2912731314 isRetracted "false" @default.
- W2912731314 magId "2912731314" @default.
- W2912731314 workType "article" @default.