Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912735087> ?p ?o ?g. }
- W2912735087 endingPage "232" @default.
- W2912735087 startingPage "218" @default.
- W2912735087 abstract "The X-ray screening is one of the most popular methodologies in detection of respiratory system diseases. Chest organs are screened on the film or digital file which go to the doctor for evaluation. However, the analysis of x-ray images requires much experience and time. Clinical decision support is very important for medical examinations. The use of Computational Intelligence can simulate the evaluation and decision processes of a medical expert. We propose a method to provide a decision support for the doctor in order to help to consult each case faster and more precisely. We use image descriptors based on the spatial distribution of Hue, Saturation and Brightness values in x-ray images, and a neural network co-working with heuristic algorithms (Moth-Flame, Ant Lion) to detect degenerated lung tissues in x-ray image. The neural network evaluates the image and if the possibility of a respiratory disease is detected, the heuristic method identifies the degenerated tissues in the x-ray image in detail based on the use of the proposed fitness function. The average accuracy is 79.06% in pre-detection stage, similarly the sensitivity and the specificity averaged for three pre-classified diseases are 84.22% and 66.7%, respectively. The misclassification errors are 3.23% for false positives and 3.76% for false negatives. The proposed neuro-heuristic approach addresses small changes in the structure of lung tissues, which appear in pneumonia, sarcoidosis or cancer and some consequences that may appear after the treatment. The results show high potential of the newly proposed method. Additionally, the method is flexible and has low computational burden." @default.
- W2912735087 created "2019-02-21" @default.
- W2912735087 creator A5003799076 @default.
- W2912735087 creator A5011600656 @default.
- W2912735087 creator A5016267473 @default.
- W2912735087 creator A5023533678 @default.
- W2912735087 creator A5024880206 @default.
- W2912735087 creator A5042653526 @default.
- W2912735087 creator A5048495064 @default.
- W2912735087 date "2019-07-01" @default.
- W2912735087 modified "2023-10-03" @default.
- W2912735087 title "A neuro-heuristic approach for recognition of lung diseases from X-ray images" @default.
- W2912735087 cites W1966539979 @default.
- W2912735087 cites W1980911747 @default.
- W2912735087 cites W1995003188 @default.
- W2912735087 cites W1995505873 @default.
- W2912735087 cites W1998955863 @default.
- W2912735087 cites W2001979953 @default.
- W2912735087 cites W2003318080 @default.
- W2912735087 cites W2010497705 @default.
- W2912735087 cites W2012231760 @default.
- W2912735087 cites W2054654791 @default.
- W2912735087 cites W2102826803 @default.
- W2912735087 cites W2125187310 @default.
- W2912735087 cites W2126423964 @default.
- W2912735087 cites W2139130438 @default.
- W2912735087 cites W2168083201 @default.
- W2912735087 cites W2186984857 @default.
- W2912735087 cites W2278709159 @default.
- W2912735087 cites W2320641533 @default.
- W2912735087 cites W2343973580 @default.
- W2912735087 cites W2427838904 @default.
- W2912735087 cites W2503742964 @default.
- W2912735087 cites W2584232769 @default.
- W2912735087 cites W2755522004 @default.
- W2912735087 cites W2768984829 @default.
- W2912735087 cites W2790206699 @default.
- W2912735087 cites W2796592647 @default.
- W2912735087 cites W2800539275 @default.
- W2912735087 cites W2801596629 @default.
- W2912735087 cites W2802087177 @default.
- W2912735087 cites W2883559393 @default.
- W2912735087 cites W2886848602 @default.
- W2912735087 cites W2887196013 @default.
- W2912735087 cites W2889050726 @default.
- W2912735087 cites W2889227979 @default.
- W2912735087 cites W4294305479 @default.
- W2912735087 cites W883434633 @default.
- W2912735087 doi "https://doi.org/10.1016/j.eswa.2019.01.060" @default.
- W2912735087 hasPublicationYear "2019" @default.
- W2912735087 type Work @default.
- W2912735087 sameAs 2912735087 @default.
- W2912735087 citedByCount "101" @default.
- W2912735087 countsByYear W29127350872019 @default.
- W2912735087 countsByYear W29127350872020 @default.
- W2912735087 countsByYear W29127350872021 @default.
- W2912735087 countsByYear W29127350872022 @default.
- W2912735087 countsByYear W29127350872023 @default.
- W2912735087 crossrefType "journal-article" @default.
- W2912735087 hasAuthorship W2912735087A5003799076 @default.
- W2912735087 hasAuthorship W2912735087A5011600656 @default.
- W2912735087 hasAuthorship W2912735087A5016267473 @default.
- W2912735087 hasAuthorship W2912735087A5023533678 @default.
- W2912735087 hasAuthorship W2912735087A5024880206 @default.
- W2912735087 hasAuthorship W2912735087A5042653526 @default.
- W2912735087 hasAuthorship W2912735087A5048495064 @default.
- W2912735087 hasConcept C119857082 @default.
- W2912735087 hasConcept C127413603 @default.
- W2912735087 hasConcept C153180895 @default.
- W2912735087 hasConcept C154945302 @default.
- W2912735087 hasConcept C173801870 @default.
- W2912735087 hasConcept C21200559 @default.
- W2912735087 hasConcept C24326235 @default.
- W2912735087 hasConcept C41008148 @default.
- W2912735087 hasConcept C50644808 @default.
- W2912735087 hasConcept C64869954 @default.
- W2912735087 hasConceptScore W2912735087C119857082 @default.
- W2912735087 hasConceptScore W2912735087C127413603 @default.
- W2912735087 hasConceptScore W2912735087C153180895 @default.
- W2912735087 hasConceptScore W2912735087C154945302 @default.
- W2912735087 hasConceptScore W2912735087C173801870 @default.
- W2912735087 hasConceptScore W2912735087C21200559 @default.
- W2912735087 hasConceptScore W2912735087C24326235 @default.
- W2912735087 hasConceptScore W2912735087C41008148 @default.
- W2912735087 hasConceptScore W2912735087C50644808 @default.
- W2912735087 hasConceptScore W2912735087C64869954 @default.
- W2912735087 hasFunder F4320335777 @default.
- W2912735087 hasLocation W29127350871 @default.
- W2912735087 hasOpenAccess W2912735087 @default.
- W2912735087 hasPrimaryLocation W29127350871 @default.
- W2912735087 hasRelatedWork W2386387936 @default.
- W2912735087 hasRelatedWork W2961085424 @default.
- W2912735087 hasRelatedWork W3046775127 @default.
- W2912735087 hasRelatedWork W3170094116 @default.
- W2912735087 hasRelatedWork W4205958290 @default.
- W2912735087 hasRelatedWork W4285260836 @default.
- W2912735087 hasRelatedWork W4286629047 @default.
- W2912735087 hasRelatedWork W4306321456 @default.