Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912741290> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2912741290 endingPage "51" @default.
- W2912741290 startingPage "37" @default.
- W2912741290 abstract "Epilepsy is a disorder of the central nervous system in which a considerably large number of neurons at a certain instance of time show abnormal electrical activity. Worldwide according to estimation by WHO, roughly 50 million people are affected by epilepsy that includes patients from infants and adolescent to adults. The most common tool that is used for the determining epileptic seizure after its manifestation is the electroencephalogram (EEG). A certain number of changes occur in behavior as well as perception during epilepsy attack that can be noted chronologically. Generally in human being the manifestation of seizure is illustrated by ictal patterns. The onset of seizures are marked by the change in the ictal phase and this change helps in understanding the underlying mechanism of brain during an epileptic attack so that diagnosis and treatment can be bestowed upon the patient. Over the years, research is going in this domain to develop algorithms that can differentiate between seizure and non-seizure phases and develop mechanism that can detect and predict seizure before its onset. In this paper, we have extensively studied different soft computing techniques that have been developed over the years and have addressed the major singular problem of detection and prediction of an epilepsy seizure before its manifestation so that the after effects of the seizure can be minimized. The range of techniques that have been used for this purpose ranges from artificial neural network, support vector machines, adaptive neuro-fuzzy inference system, genetic algorithm and so on. Comparative study of these different soft computing techniques has been studied to obtain an idea about the performance and accuracy of the various methods. The paper also brings forth the practicality of the techniques in real life scenario and identifies the shortcomings as well as determines the area in this domain that holds prospective for future scope of work. Epilepsy research is a fascinating area that comes with numerous potentials for developing automated systems that would open new avenues for treating the patient. Therefore, in this paper a review is done on different soft computing techniques to understand where our research scenario stands and what improvisations can be made that would not only provide better solution and enhance the quality of living of the epilepsy patients but will also find effective answers to the unanswerable questions." @default.
- W2912741290 created "2019-02-21" @default.
- W2912741290 creator A5036243132 @default.
- W2912741290 creator A5042831035 @default.
- W2912741290 creator A5068965698 @default.
- W2912741290 date "2019-01-01" @default.
- W2912741290 modified "2023-09-25" @default.
- W2912741290 title "A Review on Epileptic Seizure Detection and Prediction Using Soft Computing Techniques" @default.
- W2912741290 cites W1969884826 @default.
- W2912741290 cites W1973525977 @default.
- W2912741290 cites W1979148805 @default.
- W2912741290 cites W1981898797 @default.
- W2912741290 cites W2030055612 @default.
- W2912741290 cites W2041935121 @default.
- W2912741290 cites W2050102536 @default.
- W2912741290 cites W2052466231 @default.
- W2912741290 cites W2065454702 @default.
- W2912741290 cites W2080966422 @default.
- W2912741290 cites W2097120763 @default.
- W2912741290 cites W2101383962 @default.
- W2912741290 cites W2101970850 @default.
- W2912741290 cites W2133082272 @default.
- W2912741290 cites W2138160374 @default.
- W2912741290 cites W2158468574 @default.
- W2912741290 cites W2166306684 @default.
- W2912741290 cites W2169831262 @default.
- W2912741290 cites W2284031736 @default.
- W2912741290 cites W2320050750 @default.
- W2912741290 cites W2337811998 @default.
- W2912741290 cites W2466409464 @default.
- W2912741290 cites W2487696574 @default.
- W2912741290 cites W2559256361 @default.
- W2912741290 cites W4234795407 @default.
- W2912741290 doi "https://doi.org/10.1007/978-3-030-03131-2_3" @default.
- W2912741290 hasPublicationYear "2019" @default.
- W2912741290 type Work @default.
- W2912741290 sameAs 2912741290 @default.
- W2912741290 citedByCount "5" @default.
- W2912741290 countsByYear W29127412902020 @default.
- W2912741290 countsByYear W29127412902021 @default.
- W2912741290 countsByYear W29127412902022 @default.
- W2912741290 crossrefType "book-chapter" @default.
- W2912741290 hasAuthorship W2912741290A5036243132 @default.
- W2912741290 hasAuthorship W2912741290A5042831035 @default.
- W2912741290 hasAuthorship W2912741290A5068965698 @default.
- W2912741290 hasConcept C111472728 @default.
- W2912741290 hasConcept C119857082 @default.
- W2912741290 hasConcept C138885662 @default.
- W2912741290 hasConcept C140073362 @default.
- W2912741290 hasConcept C154945302 @default.
- W2912741290 hasConcept C15744967 @default.
- W2912741290 hasConcept C169760540 @default.
- W2912741290 hasConcept C17755696 @default.
- W2912741290 hasConcept C2778186239 @default.
- W2912741290 hasConcept C2778201146 @default.
- W2912741290 hasConcept C2779334592 @default.
- W2912741290 hasConcept C41008148 @default.
- W2912741290 hasConcept C50644808 @default.
- W2912741290 hasConcept C522805319 @default.
- W2912741290 hasConcept C89611455 @default.
- W2912741290 hasConceptScore W2912741290C111472728 @default.
- W2912741290 hasConceptScore W2912741290C119857082 @default.
- W2912741290 hasConceptScore W2912741290C138885662 @default.
- W2912741290 hasConceptScore W2912741290C140073362 @default.
- W2912741290 hasConceptScore W2912741290C154945302 @default.
- W2912741290 hasConceptScore W2912741290C15744967 @default.
- W2912741290 hasConceptScore W2912741290C169760540 @default.
- W2912741290 hasConceptScore W2912741290C17755696 @default.
- W2912741290 hasConceptScore W2912741290C2778186239 @default.
- W2912741290 hasConceptScore W2912741290C2778201146 @default.
- W2912741290 hasConceptScore W2912741290C2779334592 @default.
- W2912741290 hasConceptScore W2912741290C41008148 @default.
- W2912741290 hasConceptScore W2912741290C50644808 @default.
- W2912741290 hasConceptScore W2912741290C522805319 @default.
- W2912741290 hasConceptScore W2912741290C89611455 @default.
- W2912741290 hasLocation W29127412901 @default.
- W2912741290 hasOpenAccess W2912741290 @default.
- W2912741290 hasPrimaryLocation W29127412901 @default.
- W2912741290 hasRelatedWork W1980829547 @default.
- W2912741290 hasRelatedWork W1990627463 @default.
- W2912741290 hasRelatedWork W1996428514 @default.
- W2912741290 hasRelatedWork W2008631356 @default.
- W2912741290 hasRelatedWork W2016645643 @default.
- W2912741290 hasRelatedWork W2087401364 @default.
- W2912741290 hasRelatedWork W2168763307 @default.
- W2912741290 hasRelatedWork W2533164945 @default.
- W2912741290 hasRelatedWork W3104061430 @default.
- W2912741290 hasRelatedWork W4281614007 @default.
- W2912741290 isParatext "false" @default.
- W2912741290 isRetracted "false" @default.
- W2912741290 magId "2912741290" @default.
- W2912741290 workType "book-chapter" @default.