Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912741532> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2912741532 abstract "Damaged identification scheme is used to monitor and locate the damage on astructure. Vibration based damage identification scheme which utilise vibrational modaldata is popular due to its non-destructive nature. Past researches used natural frequency,mode shapes and damping ratio for their damage identification scheme. These modalparameters are considered as downstream data which is less sensitive and accurate thanupstream data. Frequency Response Function (FRF), the upstream data, is directlymeasured from the vibration sensors has lesser error produced and high sensitivity.Experimental Modal Analysis (EMA) required the machine or system to be shut down,which lead to high downtime cost. Therefore, by applying Impact-Synchronous ModalAnalysis (ISMA), the system does not have to be completely shut down, and yet couldobtained EMA comparable vibrational modal data through signal de-noising process. Onthe other hand, by using the recent technology Artificial Neural Network (ANN), it canmake any complex nonlinear input-output relationship by just learning from datasetsgiven to it regardless any discontinuity and without any extra mathematical model. In thisstudy, ANN is used to identify damage and its location on an in-service machine byfeeding the de-noised ISMA FRF dataset to train and test the model. Thus, this study willbe using the FRF data as the ANN input to identify damage on a running machine.Multilayer Perceptron (MLP) with backpropagation learning algorithm ANN is used inthis study. Moreover, this study needs to minimize the number of samples used byreducing number of sensors and frequency range used without affecting the performanceaccuracy. Finding the relationship between sensor location and the performance accuracyby selecting the correct vibration mode is also one of the objective of this study. Theexperiment setup is done on a rectangular Perspex plate structure to simulate a structureof a vehicle. EMA and ISMA techniques were used to acquire both datasets, wherebylater EMA datasets will be used as a training dataset as for ISMA datasets as the testingdatasets. Python language is used in this study and utilized the Keras library withTensorflow backend. Results shows that this study managed to design a damageidentification scheme by using FRF’s datasets with ANN. This study also managed tominimize the number of sensors from nine (9) sensors to a single sensor with aperformance accuracy of 100%. Lastly, this study proved that there is a relationship thesensor location and the accuracy of the prediction by selecting the correct vibration mode." @default.
- W2912741532 created "2019-02-21" @default.
- W2912741532 creator A5043331999 @default.
- W2912741532 creator A5063223424 @default.
- W2912741532 date "2018-06-25" @default.
- W2912741532 modified "2023-09-24" @default.
- W2912741532 title "Development of damage identification scheme using de-noised modal frequency response function data with artificial neural network / Mohamad Izzudin Hussein Shah" @default.
- W2912741532 hasPublicationYear "2018" @default.
- W2912741532 type Work @default.
- W2912741532 sameAs 2912741532 @default.
- W2912741532 citedByCount "0" @default.
- W2912741532 crossrefType "dissertation" @default.
- W2912741532 hasAuthorship W2912741532A5043331999 @default.
- W2912741532 hasAuthorship W2912741532A5063223424 @default.
- W2912741532 hasConcept C104286136 @default.
- W2912741532 hasConcept C115903868 @default.
- W2912741532 hasConcept C116834253 @default.
- W2912741532 hasConcept C119247159 @default.
- W2912741532 hasConcept C119599485 @default.
- W2912741532 hasConcept C121332964 @default.
- W2912741532 hasConcept C127413603 @default.
- W2912741532 hasConcept C135628077 @default.
- W2912741532 hasConcept C154945302 @default.
- W2912741532 hasConcept C155032097 @default.
- W2912741532 hasConcept C179717631 @default.
- W2912741532 hasConcept C180591934 @default.
- W2912741532 hasConcept C185592680 @default.
- W2912741532 hasConcept C188027245 @default.
- W2912741532 hasConcept C198394728 @default.
- W2912741532 hasConcept C200239387 @default.
- W2912741532 hasConcept C200601418 @default.
- W2912741532 hasConcept C24890656 @default.
- W2912741532 hasConcept C41008148 @default.
- W2912741532 hasConcept C50644808 @default.
- W2912741532 hasConcept C59822182 @default.
- W2912741532 hasConcept C60908668 @default.
- W2912741532 hasConcept C66938386 @default.
- W2912741532 hasConcept C67186912 @default.
- W2912741532 hasConcept C71139939 @default.
- W2912741532 hasConcept C8590192 @default.
- W2912741532 hasConcept C86803240 @default.
- W2912741532 hasConceptScore W2912741532C104286136 @default.
- W2912741532 hasConceptScore W2912741532C115903868 @default.
- W2912741532 hasConceptScore W2912741532C116834253 @default.
- W2912741532 hasConceptScore W2912741532C119247159 @default.
- W2912741532 hasConceptScore W2912741532C119599485 @default.
- W2912741532 hasConceptScore W2912741532C121332964 @default.
- W2912741532 hasConceptScore W2912741532C127413603 @default.
- W2912741532 hasConceptScore W2912741532C135628077 @default.
- W2912741532 hasConceptScore W2912741532C154945302 @default.
- W2912741532 hasConceptScore W2912741532C155032097 @default.
- W2912741532 hasConceptScore W2912741532C179717631 @default.
- W2912741532 hasConceptScore W2912741532C180591934 @default.
- W2912741532 hasConceptScore W2912741532C185592680 @default.
- W2912741532 hasConceptScore W2912741532C188027245 @default.
- W2912741532 hasConceptScore W2912741532C198394728 @default.
- W2912741532 hasConceptScore W2912741532C200239387 @default.
- W2912741532 hasConceptScore W2912741532C200601418 @default.
- W2912741532 hasConceptScore W2912741532C24890656 @default.
- W2912741532 hasConceptScore W2912741532C41008148 @default.
- W2912741532 hasConceptScore W2912741532C50644808 @default.
- W2912741532 hasConceptScore W2912741532C59822182 @default.
- W2912741532 hasConceptScore W2912741532C60908668 @default.
- W2912741532 hasConceptScore W2912741532C66938386 @default.
- W2912741532 hasConceptScore W2912741532C67186912 @default.
- W2912741532 hasConceptScore W2912741532C71139939 @default.
- W2912741532 hasConceptScore W2912741532C8590192 @default.
- W2912741532 hasConceptScore W2912741532C86803240 @default.
- W2912741532 hasLocation W29127415321 @default.
- W2912741532 hasOpenAccess W2912741532 @default.
- W2912741532 hasPrimaryLocation W29127415321 @default.
- W2912741532 hasRelatedWork W157509158 @default.
- W2912741532 hasRelatedWork W2019464769 @default.
- W2912741532 hasRelatedWork W2026972525 @default.
- W2912741532 hasRelatedWork W2108951811 @default.
- W2912741532 hasRelatedWork W2505426644 @default.
- W2912741532 hasRelatedWork W2762903095 @default.
- W2912741532 hasRelatedWork W2802910261 @default.
- W2912741532 hasRelatedWork W2885340614 @default.
- W2912741532 hasRelatedWork W2914910249 @default.
- W2912741532 hasRelatedWork W3005473234 @default.
- W2912741532 hasRelatedWork W3080689312 @default.
- W2912741532 hasRelatedWork W3091779856 @default.
- W2912741532 hasRelatedWork W3106816961 @default.
- W2912741532 hasRelatedWork W3120745309 @default.
- W2912741532 hasRelatedWork W3137896435 @default.
- W2912741532 hasRelatedWork W3188008894 @default.
- W2912741532 hasRelatedWork W3201825680 @default.
- W2912741532 hasRelatedWork W3210454478 @default.
- W2912741532 hasRelatedWork W3213234209 @default.
- W2912741532 hasRelatedWork W2991690233 @default.
- W2912741532 isParatext "false" @default.
- W2912741532 isRetracted "false" @default.
- W2912741532 magId "2912741532" @default.
- W2912741532 workType "dissertation" @default.