Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912750253> ?p ?o ?g. }
- W2912750253 endingPage "189" @default.
- W2912750253 startingPage "180" @default.
- W2912750253 abstract "Abstract Several studies have attempted to predict ground PM2.5 concentrations using satellite aerosol optical depth (AOD) retrieval. However, over 70%–90% of aerosol retrievals are non-random missing, which limits and biases the estimation. To the best of our knowledge, this issue has not been well resolved to date. The aim of this study was to develop an interpolation technique to handle the missing data retrieval problem and to estimate the daily PM2.5 for a high coverage dataset with 3-km resolution in China by fitting the complex temporal and spatial variations. We developed a two-step interpolation method (i.e., the mixed-effect model and inverse distance weighting technology) to replace the missing values in AOD. Next, the extreme gradient boosting (XGBoost) technique that includes a non-linear exposure-lag-response model (NELRM) was proposed and validated to estimate the daily levels of PM2.5 across China during 2014–2015. After two steps of interpolation, the missing value rate of daily AOD data was reduced from 87.91% to 13.83%. The cross-validation (CV) R-square, root mean square error (RMSE) and mean absolute percentage prediction error (MAPE) of the interpolation were 0.76, 0.10 and 21.41%, respectively. The cross-validation for the prediction of daily PM2.5 resulted in R2 = 0.86, RMSE = 14.98, and MAPE = 23.72%. The results of this study indicate that the two-step interpolation method can largely resolve the non-random missing data problem and that the combined XGBoost methods have a good ability to estimate fine particulate matter concentrations." @default.
- W2912750253 created "2019-02-21" @default.
- W2912750253 creator A5009826575 @default.
- W2912750253 creator A5015372298 @default.
- W2912750253 creator A5020079595 @default.
- W2912750253 creator A5030584841 @default.
- W2912750253 creator A5035120060 @default.
- W2912750253 creator A5061901723 @default.
- W2912750253 creator A5068728771 @default.
- W2912750253 creator A5083967189 @default.
- W2912750253 date "2019-04-01" @default.
- W2912750253 modified "2023-10-16" @default.
- W2912750253 title "Extreme gradient boosting model to estimate PM2.5 concentrations with missing-filled satellite data in China" @default.
- W2912750253 cites W1483912579 @default.
- W2912750253 cites W1606767976 @default.
- W2912750253 cites W1752956936 @default.
- W2912750253 cites W1940238987 @default.
- W2912750253 cites W1974279982 @default.
- W2912750253 cites W1987337512 @default.
- W2912750253 cites W2007791627 @default.
- W2912750253 cites W2013519992 @default.
- W2912750253 cites W2027409234 @default.
- W2912750253 cites W2031528200 @default.
- W2912750253 cites W2039636725 @default.
- W2912750253 cites W2054279173 @default.
- W2912750253 cites W2054806977 @default.
- W2912750253 cites W2087526861 @default.
- W2912750253 cites W2094677081 @default.
- W2912750253 cites W2129479849 @default.
- W2912750253 cites W2132111132 @default.
- W2912750253 cites W2284873887 @default.
- W2912750253 cites W2297827415 @default.
- W2912750253 cites W2314479789 @default.
- W2912750253 cites W2316167246 @default.
- W2912750253 cites W2464155520 @default.
- W2912750253 cites W2470476097 @default.
- W2912750253 cites W2509762016 @default.
- W2912750253 cites W2525243525 @default.
- W2912750253 cites W2527442762 @default.
- W2912750253 cites W2559999825 @default.
- W2912750253 cites W2579949992 @default.
- W2912750253 cites W2620300958 @default.
- W2912750253 cites W2740174665 @default.
- W2912750253 cites W2740640938 @default.
- W2912750253 cites W2742946820 @default.
- W2912750253 cites W2767202706 @default.
- W2912750253 cites W2767631445 @default.
- W2912750253 cites W2776069591 @default.
- W2912750253 cites W2778845505 @default.
- W2912750253 cites W2781898996 @default.
- W2912750253 cites W2794543278 @default.
- W2912750253 cites W2800133189 @default.
- W2912750253 cites W2804926452 @default.
- W2912750253 cites W2811009165 @default.
- W2912750253 cites W4239502029 @default.
- W2912750253 cites W4294826717 @default.
- W2912750253 cites W590735017 @default.
- W2912750253 doi "https://doi.org/10.1016/j.atmosenv.2019.01.027" @default.
- W2912750253 hasPublicationYear "2019" @default.
- W2912750253 type Work @default.
- W2912750253 sameAs 2912750253 @default.
- W2912750253 citedByCount "123" @default.
- W2912750253 countsByYear W29127502532019 @default.
- W2912750253 countsByYear W29127502532020 @default.
- W2912750253 countsByYear W29127502532021 @default.
- W2912750253 countsByYear W29127502532022 @default.
- W2912750253 countsByYear W29127502532023 @default.
- W2912750253 crossrefType "journal-article" @default.
- W2912750253 hasAuthorship W2912750253A5009826575 @default.
- W2912750253 hasAuthorship W2912750253A5015372298 @default.
- W2912750253 hasAuthorship W2912750253A5020079595 @default.
- W2912750253 hasAuthorship W2912750253A5030584841 @default.
- W2912750253 hasAuthorship W2912750253A5035120060 @default.
- W2912750253 hasAuthorship W2912750253A5061901723 @default.
- W2912750253 hasAuthorship W2912750253A5068728771 @default.
- W2912750253 hasAuthorship W2912750253A5083967189 @default.
- W2912750253 hasConcept C105795698 @default.
- W2912750253 hasConcept C119857082 @default.
- W2912750253 hasConcept C127313418 @default.
- W2912750253 hasConcept C127413603 @default.
- W2912750253 hasConcept C146978453 @default.
- W2912750253 hasConcept C153294291 @default.
- W2912750253 hasConcept C166957645 @default.
- W2912750253 hasConcept C169258074 @default.
- W2912750253 hasConcept C191935318 @default.
- W2912750253 hasConcept C19269812 @default.
- W2912750253 hasConcept C205649164 @default.
- W2912750253 hasConcept C33923547 @default.
- W2912750253 hasConcept C39432304 @default.
- W2912750253 hasConcept C41008148 @default.
- W2912750253 hasConcept C46686674 @default.
- W2912750253 hasConcept C49204034 @default.
- W2912750253 hasConcept C70153297 @default.
- W2912750253 hasConcept C91586092 @default.
- W2912750253 hasConcept C9357733 @default.
- W2912750253 hasConceptScore W2912750253C105795698 @default.
- W2912750253 hasConceptScore W2912750253C119857082 @default.
- W2912750253 hasConceptScore W2912750253C127313418 @default.