Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912752510> ?p ?o ?g. }
- W2912752510 endingPage "337" @default.
- W2912752510 startingPage "328" @default.
- W2912752510 abstract "In the last decade, a rapidly growing number of operando spectroscopy analyses have helped unravelling the electrochemical mechanism of lithium and post-lithium battery materials. The corresponding experiments usually produce large datasets containing many tens or hundreds of spectra. This considerable amount of data is calling for a suitable strategy for their treatment in a reliable way and within reasonable time frame. To this end, an alternative and innovating approach allowing one to extract all meaningful information from such data is the use of chemometric tools such as Principal Component Analysis (PCA) and multivariate curve resolution (MCR). PCA is generally used to discover the minimal particular structures in multivariate spectral data sets. In the case of operando spectroscopy data, it can be used to determine the number of independent components contributing to a complete series of collected spectra during electrochemical cycling. The number of principal components determined by PCA can then be used as the basis for MCR analysis, which allows the stepwise reconstruction of the “real” spectral components without needing any pre-existing model or any presumptive information about the system. In this paper, we will show how such approach can be effectively applied to different techniques, such as Mössbauer spectroscopy, X-ray absorption spectroscopy or transmission soft X-ray microscopy, for the comprehension of the electrochemical mechanisms in battery studies." @default.
- W2912752510 created "2019-02-21" @default.
- W2912752510 creator A5005849120 @default.
- W2912752510 creator A5025299462 @default.
- W2912752510 creator A5035533515 @default.
- W2912752510 creator A5044224217 @default.
- W2912752510 creator A5070686271 @default.
- W2912752510 creator A5078284808 @default.
- W2912752510 date "2019-03-01" @default.
- W2912752510 modified "2023-10-09" @default.
- W2912752510 title "Applying chemometrics to study battery materials: Towards the comprehensive analysis of complex operando datasets" @default.
- W2912752510 cites W1665405568 @default.
- W2912752510 cites W1967638115 @default.
- W2912752510 cites W1976563289 @default.
- W2912752510 cites W1976906583 @default.
- W2912752510 cites W1980837801 @default.
- W2912752510 cites W1987874102 @default.
- W2912752510 cites W1992889807 @default.
- W2912752510 cites W1994419809 @default.
- W2912752510 cites W2001492509 @default.
- W2912752510 cites W2004365213 @default.
- W2912752510 cites W2004836094 @default.
- W2912752510 cites W2006925553 @default.
- W2912752510 cites W2007808574 @default.
- W2912752510 cites W2010234682 @default.
- W2912752510 cites W2014922519 @default.
- W2912752510 cites W2016388659 @default.
- W2912752510 cites W2029420020 @default.
- W2912752510 cites W2029645606 @default.
- W2912752510 cites W2035372159 @default.
- W2912752510 cites W2043381570 @default.
- W2912752510 cites W2055064389 @default.
- W2912752510 cites W2055772444 @default.
- W2912752510 cites W2057129181 @default.
- W2912752510 cites W2069753895 @default.
- W2912752510 cites W2073669184 @default.
- W2912752510 cites W2074543342 @default.
- W2912752510 cites W2075903254 @default.
- W2912752510 cites W2082505332 @default.
- W2912752510 cites W2088973699 @default.
- W2912752510 cites W2089945444 @default.
- W2912752510 cites W2105209877 @default.
- W2912752510 cites W2123649031 @default.
- W2912752510 cites W2138285500 @default.
- W2912752510 cites W2153454605 @default.
- W2912752510 cites W2159519319 @default.
- W2912752510 cites W2219812451 @default.
- W2912752510 cites W2224935609 @default.
- W2912752510 cites W2263133727 @default.
- W2912752510 cites W2265269514 @default.
- W2912752510 cites W2315761003 @default.
- W2912752510 cites W2319978701 @default.
- W2912752510 cites W2324887991 @default.
- W2912752510 cites W2331521133 @default.
- W2912752510 cites W2341921420 @default.
- W2912752510 cites W2506081472 @default.
- W2912752510 cites W2506942598 @default.
- W2912752510 cites W2514437433 @default.
- W2912752510 cites W2527082374 @default.
- W2912752510 cites W2529810164 @default.
- W2912752510 cites W2569107261 @default.
- W2912752510 cites W2579248462 @default.
- W2912752510 cites W2586344467 @default.
- W2912752510 cites W2587964466 @default.
- W2912752510 cites W2593127122 @default.
- W2912752510 cites W2596036734 @default.
- W2912752510 cites W2598369888 @default.
- W2912752510 cites W2600961837 @default.
- W2912752510 cites W2606264218 @default.
- W2912752510 cites W2613543643 @default.
- W2912752510 cites W2619091406 @default.
- W2912752510 cites W2727395732 @default.
- W2912752510 cites W2736113993 @default.
- W2912752510 cites W2755068650 @default.
- W2912752510 cites W2766113716 @default.
- W2912752510 cites W2766764535 @default.
- W2912752510 cites W2769834875 @default.
- W2912752510 cites W2771526032 @default.
- W2912752510 cites W2775629343 @default.
- W2912752510 cites W2784761876 @default.
- W2912752510 cites W2789367365 @default.
- W2912752510 cites W2791595804 @default.
- W2912752510 cites W2791975747 @default.
- W2912752510 cites W2801325151 @default.
- W2912752510 cites W2805354414 @default.
- W2912752510 cites W2806397382 @default.
- W2912752510 cites W2809676014 @default.
- W2912752510 cites W2898131398 @default.
- W2912752510 doi "https://doi.org/10.1016/j.ensm.2019.02.002" @default.
- W2912752510 hasPublicationYear "2019" @default.
- W2912752510 type Work @default.
- W2912752510 sameAs 2912752510 @default.
- W2912752510 citedByCount "40" @default.
- W2912752510 countsByYear W29127525102019 @default.
- W2912752510 countsByYear W29127525102020 @default.
- W2912752510 countsByYear W29127525102021 @default.
- W2912752510 countsByYear W29127525102022 @default.
- W2912752510 countsByYear W29127525102023 @default.